Welcome to Computational Economics!¶
A 400 level undergraduate economics course offered at the Department of Economics at Towson University in Maryland, USA.
Course Instructor: Prof. Juergen Jung
email: jjung@towson.edu
web: https://juejung.github.io/
- 1. Course Administration
- 2. First Steps in Python
- 3. Python Data Structures
- 4. Basic Programming Techniques
- 4.1. Branching into Alternative Code Blocks
- 4.2. For-Loops
- 4.2.1. Loop to Repeat a Simple Print Function
- 4.2.2. Loop to Calculate the Sum of Numbers
- 4.2.3. Loop to Calculate the Product of Numbers
- 4.2.4. Loop to Print the Elements stored in a List
- 4.2.5. Loop with Iterator Values Not Starting at Zero
- 4.2.6. Nested Loops
- 4.2.7. Looping through the Content of a List
- 4.2.8. Combining Lists and Looping Through Them
- 4.3. While Loop
- 4.4. Combining Branching Statements and Loops
- 4.5. Time Your Work
- 4.6. Key Concepts and Summary
- 4.7. Self-Check Questions
- 5. Debugging
- 6. Vectors and Matrices
- 7. Plotting using
matplotlib
- 8. Functions
- 8.1. A Simple Demonstration Example
- 8.2. Simple User Defined Function in Separate File
- 8.3. Advanced Graphing using Loops and Functions
- 8.4. Functions with Default Arguments
- 8.5. Scope of Variables in Functions
- 8.6. Scope of Lists and Arrays in Functions
- 8.7. Key Concepts and Summary
- 8.8. Self-Check Questions
- 9. Object Oriented Programming
- 10. Working with Data I: Data Cleaning
- 10.1. Create Dataframe from Multiple Lists
- 10.2. Read Small Data Set from a Comma Separated (.csv) File
- 10.3. Some Pandas Tricks
- 10.3.1. Renaming Variables
- 10.3.2. Dropping and Adding Columns
- 10.3.3. Missing Values of NaN’s
- 10.3.4. Dropping and Adding Rows to a DataFrame
- 10.3.5. Dropping Rows Based on Conditions
- 10.3.6. Sorting and Reindexing DataFrames
- 10.3.7. Merging DataFrames or Adding Columns
- 10.3.8. Converting Column Types
- 10.3.9. Replacing Values in a DataFrame Conditional on Criteria
- 11. Working with Data II: Statistics
- 12. Working with Data III: Case Study
- 13. Working with Data from the Web I
- 14. Working with Data from the Web II
- 15. Regular Expressions
- 16. Random Numbers
- 16.1. Drawing a Random Number
- 16.2. Uniformly Distributed Random Numbers
- 16.3. Normally distributed random numbers
- 16.4. T-Distributed Random Variable
- 16.5. Drawing Random Integer Values
- 16.6. Generating actions based on probabilities
- 16.7. Drawing Objects with Random Values
- 16.8. Key Concepts and Summary
- 16.9. Self-Check Questions
- 17. Random Numbers II: An Infectious Disease Simulation
- 18. Root Finding
- 19. Optimization
- 20. Constrained Optimization
- 21. A Simple OLG Model
- 22. An OLG Model with Labor-Leisure Choice
- 23. Growth Models
- 24. Machine Learning I: Introduction to Machine Learning
- 25. Machine Learning II: Categorization Algorithm
- 26. Assignments