Computational Economics
1.0
Contents:
1. Course Administration
2. First Steps in Python
3. Python Data Structures
4. Basic Programming Techniques
5. Debugging
6. Vectors and Matrices
7. Plotting using
matplotlib
8. Functions
9. Object Oriented Programming
10. Working with Data I: Data Cleaning
11. Working with Data II: Statistics
12. Working with Data III: Case Study
13. Working with Data from the Web I
14. Working with Data from the Web II
15. Regular Expressions
16. Random Numbers
17. Random Numbers II: An Infectious Disease Simulation
18. Root Finding
19. Optimization
20. Constrained Optimization
21. A Simple OLG Model
22. An OLG Model with Labor-Leisure Choice
23. Growth Models
24. Machine Learning I: Introduction to Machine Learning
25. Machine Learning II: Categorization Algorithm
26. Assignments
Computational Economics
Docs
»
Index
Index
A
|
B
|
C
|
D
|
G
|
H
|
I
|
M
|
N
|
O
|
P
|
R
|
S
|
V
|
W
|
Z
A
array
B
Bisection
C
Cake Eating Problem
Calculations
D
Data Structures
Debugger
Debugging
G
Gauss-Seidl Algorithm
H
Health Simulation
I
iPython
iPython Notebook
M
Machine Learrning
,
[1]
Matplotlib
Matrices
N
Newton-Raphson
numpy
numpy array
O
OLG
OOP
output
Overlapping generations
P
Pandas
Pandas Statistics
Pandas Statistics Github
Plotting
print function
PythonIDE
R
Random Number Generator
,
[1]
Random Numbers
,
[1]
Regex library
Root Finding
S
Script files
Scripts
Secant Method
Spyder
,
[1]
V
Vectors
W
Webscraping
Z
Zero-Point