Computational Economics
1.0

Contents:

  • 1. Course Administration
  • 2. First Steps in Python
  • 3. Python Data Structures
  • 4. Basic Programming Techniques
  • 5. Debugging
  • 6. Vectors and Matrices
  • 7. Plotting using matplotlib
  • 8. Functions
  • 9. Object Oriented Programming
  • 10. Working with Data I: Data Cleaning
  • 11. Working with Data II: Statistics
  • 12. Working with Data III: Case Study
  • 13. Working with Data from the Web I
  • 14. Working with Data from the Web II
  • 15. Regular Expressions
  • 16. Random Numbers
  • 17. Random Numbers II: An Infectious Disease Simulation
  • 18. Root Finding
  • 19. Optimization
  • 20. Constrained Optimization
  • 21. A Simple OLG Model
  • 22. An OLG Model with Labor-Leisure Choice
  • 23. Growth Models
  • 24. Machine Learning I: Introduction to Machine Learning
  • 25. Machine Learning II: Categorization Algorithm
  • 26. Assignments
Computational Economics
  • Docs »
  • Index

Index

A | B | C | D | G | H | I | M | N | O | P | R | S | V | W | Z

A

  • array

B

  • Bisection

C

  • Cake Eating Problem
  • Calculations

D

  • Data Structures
  • Debugger
  • Debugging

G

  • Gauss-Seidl Algorithm

H

  • Health Simulation

I

  • iPython
  • iPython Notebook

M

  • Machine Learrning, [1]
  • Matplotlib
  • Matrices

N

  • Newton-Raphson
  • numpy
  • numpy array

O

  • OLG
  • OOP
  • output
  • Overlapping generations

P

  • Pandas
  • Pandas Statistics
  • Pandas Statistics Github
  • Plotting
  • print function
  • PythonIDE

R

  • Random Number Generator, [1]
  • Random Numbers, [1]
  • Regex library
  • Root Finding

S

  • Script files
  • Scripts
  • Secant Method
  • Spyder, [1]

V

  • Vectors

W

  • Webscraping

Z

  • Zero-Point

© Copyright 2021, Juergen Jung

Built with Sphinx using a theme provided by Read the Docs.