Machine Learning Frameworks - Explained
- Introduction to Pytorch
- Introduction to Keras/Tensorflow
In this chapter we cover the two main ML frameworks Pytorch abd Keras.
A Simple Example using PyTorch
# Source
# https://www.youtube.com/watch?v=c36lUUr864M
import torch
import numpy as np
# Print Pytorch version
print(torch.__version__)
if torch.cuda.is_available():
print("CUDA - GPU available")
device = torch.device("cuda")
x = torch.ones(5, device=device)
y = torch.ones(5)
y = y.to(device)
z = x + y
else:
print("CUDA - GPU is NOT available")
x = torch.randn(3, requires_grad=True)
print(x)
y = x + 2
z = y*y*2
z = z.mean()
print(z)
z.backward() # dz/dx
print(x.grad)
2.0.1+cu117
CUDA - GPU available
tensor([-0.3804, -0.1803, -0.6960], requires_grad=True)
tensor(5.0899, grad_fn=<MeanBackward0>)
tensor([2.1594, 2.4263, 1.7386])
import tensorflow as tf
# Print TensorFlow version
print(tf.__version__)
if tf.test.is_built_with_cuda():
print("CUDA - GPU available")
tf.config.list_physical_devices('GPU')
else:
print("CUDA - GPU is NOT available")
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
Cell In[2], line 1
----> 1 import tensorflow as tf
3 # Print TensorFlow version
4 print(tf.__version__)
ModuleNotFoundError: No module named 'tensorflow'
Machine learning
ToDo
- Why is regression analysis machine learning. What type of machine learning is it?