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1 Appendix A: Descriptive Statistics and Construction of Health Tables

using Population Health Hazard Rates

1.1 Evidence on Work Limiting Health Problems

In this section we analyze the binary variable work limiting health problems of the RAND-HRS data set. In

the HRS survey the question is posed as:

“Now we want to ask how your health affects paid work activities. Do you have any impairment or health

problem that limits the kind or amount of paid work you can do?”

We will refer to this variable as Health − Problem and denote is as hit throughout the rest of the paper.

In order to quantify this variable we use the following discrete-choice model:

h∗it = βxit + γzi + ηi + εit, i = 1, ..., N ; t = 2, ..., Ti, (1)

where h∗it is a latent variable measuring the presence of a health-problem, xit is a vector of time varying

regressors, zi is a vector of time invariant regressors, ηi and εit represent a time-invariant individual specific

and an idiosyncratic error component.1 In the data, only a binary outcome variable is observed:

hit =

 1 if h∗it > 0,

0 otherwise,

whereas the latent h∗it is not directly observed. The vector of regressors xit contains variables that are directly

from the data and variables that have been constructed using principal components analysis (PCA). More

specifically, we have used PCA to summarize a series of 35 health indicator variables into 12 factors that we

denote as PCAMobility , PCAMental, PCAHeart−Stroke, PCACancer, PCARespiratory, PCAAdd Cancer,

PCAAdd Mental, PCANo Heart, PCANo Arthritis, PCAHips, PCASocial Interaction, andPCAAdd Mobility .

Among the 35 health indicators are variables measuring doctor diagnosed health problems like high blood pres-

sure, diabetes, cancer or tumors, lung problems, heart attacks and related heart problems, strokes, psychological

problems, and arthritis and rheumatism, changes in these variables, as well as variables measuring the individ-

uals ability to engage in different kinds of physical and mental activities. All indicators are binary variables. In

addition to the variables used in the PCA, we add a self reported health indicator categorical variable (ranging

from excellent, or value of 1, to poor with a value of 5) and the body mass index (BMI) to the list of regressors.

Finally, we control for a range of demographic, lifestyle and income/expenditure variables. Demographic

variables are age, gender, an indicator for more than 12 years of education, partnership status, and whether

parents are still alive. Income/expenditure variables are total household income, individual earnings (of the

head of the household), out-of-pocket medical expenses, total health expenditures, employment status, and a

variable measuring whether the job requires physical effort. Finally lifestyle variables describe the individual’s

1A possible alternative specification would be a regression of income on work limiting health problems. This would give an indication
of the income loss incurred after a work limiting health problem occurred. However, in this paper we do not attempt to analyze the effects
of health expectations on the income process of U.S. households so that we leave these kind of questions for future research.
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exercising and smoking habits.

A word of caution is appropriate. The regressions in this section suffer from an endogeneity problem. There

are unobserved factors that will influence both, work limiting health problems as well as the health indices that

we use to describe them. In this case a regression measures only the magnitude of association and the direction

of causation is not identified.

In order to relax the assumption that all the regressors are strictly exogenous, a dynamic specification

following ? and ? is used:

h∗it = αhit−1 + βxit−1 + γzi + ηi + εit, (2)

ηi = πxi1 + δhi1 + µi,

so that the complete model is:

h∗it = αhit−1 + βxit−1 + γzi + πxi1 + δhi1 + µi + εit.

We use Logit and Probit models to estimate this nonlinear model making distributional assumption on uit =

µi + εit. Table 1 contains the results from Logit and Probit specifications of the static model (1) whereas table

2 contains the results for the dynamic model (2). We see that almost all coefficients in the simple model are

significant (indicated with stars) except for PCA factors highly “loaded” with cancer, additional cancer, and

additional mental characteristics. For the dynamic model (2) we only show coefficient estimates for vectors

α and β in table 2 where the L2 prefix indicates variables with period lag t − 1. Note that one model period

corresponds to 2 calendar years as we only observe individuals every two years. The dynamic model confirms

the findings of the simple model but shows fewer significant parameters.

In general, the measures for earnings are negatively correlated with health problems. Asset holdings turn

out to be not significant. From the demographic regressors we find that men are more likely to develop health

problems and that age is significant and negatively correlated with work limiting health problems. Finally,

healthy lifestyle choices like regular exercise is negatively related with health problems. This coefficient is sig-

nificant in the standard model, but becomes insignificant in the dynamic specification. Interestingly, smoking

is significantly negatively related in the dynamic specification.

We also estimated a model of the Hausman-Taylor type that assumes that some variables are correlated

with the individual fixed effect αi but exogenous with respect to the error εit. We assume that all health

indicator variables hit are endogenous in this sense and then use the Hausman Taylor type estimator. Since the

number of time varying exogenous covariates is larger than the number of time invariant endogenous covariates,

identification is not a problem. See (?, p. 760-762) for more details on the IV estimator for the Hausman-Taylor

Hybrid model. The values of this estimator are very similar to the random effects estimator and are therefore

not reported here.

We also test for fixed effects in the linear probability model using a Hausman test and cannot reject the

hypothesis that estimates from the consistent (but possibly less efficient fixed effects estimator) are the same
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as the more efficient but possibly inconsistent random effects estimator. We therefore conclude that it is safe

to use the more efficient random effects estimator.

The standard criticism concerning the use of self reported data in this context is that individuals tend to

answer that they do have work limiting health problems to justify that they are out of work. Estimates therefore

tend to overstate the health effects on hours worked. See ? for a discussion of this issue. Other issues with

self-reported mortality and health data include perception differences by age and socio-economic status (e.g.

?, ?) as well as nationality (e.g. ?).

1.2 Summary statistics

In table ?? we report summary statistics according to health status. The first panel in the table reports the

proportions of individuals having a specific health status in wave 1 and wave 2. We see that 54.6% of people

with excellent health in wave 1, do still report excellent health for wave 2, whereas 33.4% report their health

status as very good and 0.2% report a decline in their health to the status of poor. Similarly, of the people with

very good health in wave 1, 54.4% still have very good health in wave 2. In addition, 16.3% of those with

very good health in wave 1 improved their health to the status of excellent in wave 2, whereas 25.1% saw their

health decline to status "good". We see that health states are very persistent in the sense that for almost all

health states 50% of the individuals remain in that stage.

Panel two in table ?? summarizes the mean expectations about work limiting health problems by health

status. We find that individuals with better health status in both waves have lower expectations about future

health problems. Individuals who could improve their health over the waves report lower subjective probabili-

ties of future health problems. See panel 3 and the negative numbers in the upper right corner, where changes in

expectations about future health are negative. Panel 4 and Panel 5 report the mean expectations of living to age

75 and age 85 respectively. We again see that individuals with a better health status report higher probabilities

of surviving up to a target age.

When comparing wave 1 and wave 6 expectations according to health status we find that the persistence

of health status over six waves is still quite strong. Although fewer individuals can maintain a health status

of excellent over all six waves. We also find that people with the same health status in wave 6 have higher

expectations to live to target age 75. This is what one would expect, given that these individuals are much older

now, some of them probably very close to target age 75.

1.3 Are Health Expectations Consistent with Health Outcomes?

In table ?? we compare expectations about work limiting health problems and mortality expectations from

wave 1 and wave 2. We find that 52.1 percent of individuals who responded in both wave 1 and wave 2 had

higher expectations about contracting health problems in the future in wave 1. On the other hand 28.6 percent

had higher expectations about having health problems in wave 2, whereas 19.3 percent did not revise their

health expectations from wave 1 to wave 2.

The same comparison for subjective life expectancies reveals that compared to wave 1, 40.6 percent have
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lower subjective expectations about living to age 75 in wave 2, whereas 44.6 percent have lower expectations

about living to age 85. Roughly 15 percent give focal point responses in both waves for health expectations,

whereas focal point responses for mortality expectations ExpLiveTo75 and ExpLiveTo85 are around 23

percent and 13 percent respectively. It might be surprising to find that a large fraction of respondents, 52.1

percent find it more likely to contract health problems when they are younger. On the other hand one could

argue that an older agent who is closer to retirement and does not have any work limiting health problems will

find it more likely to also not have any problems during the next 10 years. In this sense the numbers in table

?? do make sense. The large fraction of people, 40.6 percent and 44.6 percent, whose survival expectations

up to a target age go down as they get older might be explained by additional health related information that

comes into play. On the other hand, one would expect somebody who is older, say 67 and closer to a target life

expectancy of, say, 75, would think to have a higher probability of living to that age than somebody who is two

years younger. Similar observations can be made when comparing wave 1 to wave 3 and wave 4.

1.4 Procedure

Table ?? lists the percentage of those respondents who gave continuous responses, focal responses, and no

responses in the first two waves. The table also reports transition probabilities of the different response modes

over the first two waves. We see that in wave 1 only 41.76% of respondents gave continuous responses with

12.24% providing focal point responses. A relatively large section of respondents gave no answer to the

expectations health question, 46.13%.

The focal point responses cannot represent respondents’ true probabilities, so that without correcting for

focal responses of zero or one, it is impossible to derive health curves that change over time. In this section

we attempt to recover the “true” subjective health expectations curve for each respondent. We call these the

adjusted subjective health expectations (curves).

We first derive health tables for the U.S. using observed outcome probabilities from the data. ? has

already suggested that outcome probabilities can be used as proxies for subjective mortality expectations. We

then update these tables using the subjective health expectations. The resulting adjusted subjective health

expectations do not contain focal point responses anymore but contain the additional information carried in the

observed outcome probabilities (health tables).

In order to construct the health tables we first define the hazard rates for having a work limiting health

problem as

λ0 (t) = Pr (T = tj |T ≥ tj) =
d (t)

l (t)
, (3)

where d (t) is the number of individuals developing a work limiting health problem at age t and l (t) is the

total number of individuals aged t without a health problem at the beginning of the period. The number of

individuals developing a work limiting health problem from age t to t+ 1 is

d (t) = − [l (t+ 1)− l (t)] .
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A period in this context is the two year interval between waves in the Rand-HRS survey. The zero subscript in

(3) denotes that the variable is derived from population realizations and not from a specific individual.

In addition we can derive the "survival probability". Survival in this context means remaining without a

work limiting health problem from one period to the next. We denote this survival, or better, health maintenance

probability from birth, as

S0 (t) = Pr [T ≥ t] =
∏

j|tj≤t
(1− λj) =

l (t)

l (0)
,

where l (t) is again the number of individuals aged t without work limiting health problems and l (0) is the

starting cohort of newly bournes.

The health table "survival probability" from age a up to t without censoring is

S0a (t) =
S0 (a+ t)

S0 (a)
=

l(a+t)
l(0)

l(a)
l(0)

=
l (a+ t)

l (a)
.

The health table hazard rate is the negative of the percentage change in the survival probability or more formally

λ0 (t) = −∆ lnS0 (t) = − 1

S0 (t)
Ṡ0 (t) = −d ln (S0 (t))

dt
= −%∆S0 (t) .

We can also express this as

λ0 (t) = −S0 (t+ 1)− S0 (t)

S0 (t)
= −

l(t+1)
l(0) −

l(t)
l(0)

l(t)
l(0)

= − l (t+ 1)− l (t)
l (t)

=
d (t)

l (t)
. (4)

The cumulative health-problem hazard function (in continuous time) is2

Λ0 (t) =

∫ t

0

λ0 (t) dτ =

∫ t

0

−d ln (S0 (t))

dt
dτ = − lnS0 (t) . (5)

In figure 1 we report the health-hazard rates for men and women. We limit the sample to people who are 40

years of age and older. By assumption individuals start being at risk of a work limiting health problem at age

40. We then construct the Kaplan-Meier survival rate with 99% confidence bounds. We assume individuals

live in good health (without work limiting health problems) until failure. Failure is defined as the onset of a

work limiting health problem, given that no such prior condition existed. An individual who enters the survey

with a health problem is assumed to have failed at the age of survey entry. An individual who recovers from a

health problem and develops another health problem while still in the survey at a later age is counted again as

having failed for that particular age group. An individual leaving the survey is a censored spell and decreases

the number of individuals at risk without counting towards the number of failures.3

E.g. a 70 year old male entering the survey without a health problem and reporting a health problem at

2Compare also ? for formal details on hazard functions.
3See (?, p. 59-62) for a discussion of how to model repeated failures by the same individual in Stata’s survival package. Compare also

(?, p. 580 - 584) for a brief introduction to non-parametric survival analysis.
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age 74, 76, 78 is counted as having failed at age 74. If the same individual does not report a health problem at

age 80, but again reports a problem at age 82, then a second failure is counted for the 82 year old age group.

Similarly, if a 64 year old female enters the survey with a health problem, she is assumed to have failed at age

64.

We then count the number of people at risk at each age l (t) where t = 40, ..., 95. Individuals at risk are

all individuals in the survey that have not yet left the survey and do not have a health problem. In this sense,

individuals who recover from a health problem but are still in the survey, will reenter the set of people at risk.

We then count the number of people who fail at each age t, that is people who report a health limiting work

problem at at t. The hazard rate for age t to t+ 2 is then defined as

λ (t) =
d (t)

l (t)
≡ λ (t) .

Since the hazard rates are very volatile we fit a 5th order polynomial with least squares to smooth out the edges.

From the top panel in figure 1 we see that the health hazard rates for men are higher than those for women

over almost the entire age range. We will later report estimation results based on the original hazard rates and

on the smoothed versions. We find that the results are robust and do not depend on whether we smooth the

hazard functions before applying the Bayesian updating procedure. In figure ?? we also report unconditional

hazard rates that we have calculated assuming that a person with a work limiting health problem in consecutive

years is counted as having failed multiple times. The previous hazard rates would only count a transition from

a healthy state to a sick state as failure which would then be reflected in the hazard rate. If we count both

transitions from healthy to sick and from sick to sick as failure then the resulting hazard rate will increase as

we can see in figure ??.

1.5 Subjective Hazard Rates and Survival Functions

We next turn our attention to the individual. The personal health-survival probability from age a to target age

a+ t for individual i is Sia (t) . Variable Sia (t) is a random variable and siat is a realization of this variable.4

The density of random variable Sia (t) is π (sia (t)) or π (siat) . The personal health-problem hazard rate at

age a is denoted λia (t) and the cumulative hazard rate is Λia (t) .

From (5) we can derive an individual i′s health "survival" probability (or health curve) as

Sia (t) = exp (−Λia (a+ t) + Λia (a)) = exp

(
−
∫ t

0

λia (a+ r) dr

)
. (6)

We next use an individual’s response to the health related question in the interview asking for a probability

of having a work limiting health problem within the next ten years. We denote this probability as 1 − piaτ ,
where i denotes the individual, a is the individual’s age and τ is time. Then the survival probability, that is the

probability of maintaining the good health status is piaτ and its density is conditional on the personal survival

4We closely follow ? and adopt their notation.
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probability from age a to age a+ t as in

f (piaτ |Siaτ = siaτ ) .

The method employed uses the population hazard function λ0a (a+ t) as a base and modifies it to calculate

individual hazard rates λia (a+ t) according to the following hazard scaling function

λia (a+ t) = γiλ0a (a+ t) , (7)

where γi > 1 indicates a "pessimistic" and a γi < 1 an "optimistic" individual.5

With focal responses and response errors present in piaτ the personal survival curve is not forced through

piaτ at a + τ. In this case we employ a Bayesian approach to update the individual survival curve. We de-

note the prior belief about the personal survival curve density as π (siat) . The mean of the prior density is

exp (−Ψ∆Λ0at) and its standard deviation is σ2. Parameter Ψ measures the population’s average optimistic

degree. Given Siat, the self-reported survival probability piat has density f (piat|siat) so that the difference be-

tween the survival probability Siat and the self-reported survival probability piat is the measurement error. We

use the observed piaτ to update the prior density π (siaτ ) in order to obtain the posterior density π (siaτ |piaτ ) .

The posterior density is given by

π (siaτ |piaτ ) =
f (piaτ |siaτ )π (siaτ )∫

f (piaτ |siaτ )π (siaτ ) dsiaτ
,

with mean µia and standard deviation σ1. It can be shown that the best estimator for Siτ with a quadratic loss

function L
(
Sit, Ŝit

)
= E

[
Sit − Ŝit

]2
is the conditional expectation, so that

Ŝiτ = E (Siτ |piaτ ) .

We then apply Ŝiτ to the observed record of realized health problems to obtain the model’s parameters σ1, σ2

and Ψ. The log-likelihood function is given as

lnL =
∑

NoHealthProblems

ln Ŝit +
∑

HealthProblems

ln
(

1− Ŝit
)
. (8)

We next make some assumption concerning the prior distribution of random variable Siat. We denote

the distribution of Siat as π (siaτ ) and define it as a truncated normal distribution. The mean of Siat is

exp (−Ψ∆Λ0at) , the variance is σ2
2 and the truncation is between 0 < sia < 1. The prior distribution

is

π (sia; Ψ) =

1
σ2
φ
(
sia−via
σ2

)
Φ
(

1−via
σ2

)
− Φ

(
−viaσ2

) ,
5? also calculate an age scaling model which leads to inferior results. We therefore concentrate on the hazard scaling version of their

model.
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where via is the mean and σ2 the standard deviation of the normal distribution. Both values satisfy

exp (−Ψ∆Λ0aτ ) = viat − σ2η (0, 1, viat, σ2) .

The right hand side is the mean of the truncated normal according to the formula in the appendix.

The conditional density of the responses to interview survival questions is assumed to follow a censored

normal distribution

f (piaτ |siaτ ) = φ

(
piaτ − µiaτ

σ1

)
when 0 < piaτ < 1,

Pr (piaτ = 0|siaτ ) = 1− Φ

(
µiaτ
σ1

)
, and

Pr (piaτ = 1|siaτ ) = 1− Φ

(
1− µiaτ
σ1

)
,

with variance σ2
1 . The expected value E [Sia] of the conditional distribution is

sia = 0× Pr (piaτ = 0|siaτ ) + E [x|0 < x < 1]× f (piaτ |siaτ ) + 1× Pr (piaτ = 1|siaτ ) ,

so that

sia =

[
Φ

(
1− µia
σ1

)
+ Φ

(
µia
σ1

)
− 1

]
[µia − σ1η (0, 1, µia, σ1)] +

[
1− Φ

(
1− µia
σ1

)]
,

where it can be shown (see Appendix A) that E [x|0 < x < 1] = [µia − ση (0, 1, µia, σ1)] . Finally, given

piaτ , the posterior distribution is given by

π (sia|piaτ ) =
f (piaτ |siaτ )π (siaτ )∫

f (piaτ |siaτ )π (siaτ ) dsiaτ
.

Then the best estimator for Sia under a mean square loss function is its mean, that is

Ŝia = E [Sia] =

∫ 1

0

siaπ (sia|piaτ ) dsia =

∫ 1

0
siaφ

(
piaτ−µiaτ (sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

)
dsia∫

φ
(
piaτ−µiaτ (sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

)
dsiaτ

.

We get similar results for the focal point responses at piat = 0 and 1 so that we summarize the predicted
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survival probabilities as

Ŝia =



∫ 1
0
sia

(
1−Φ

(
µia(sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

))
dsia∫ 1

0

(
1−Φ

(
µia(sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

))
dsia

, if piat = 0

∫ 1
0
siaφ

(
piaτ−µiaτ (sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

)
dsia∫

φ

(
piaτ−µiaτ (sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

)
dsiaτ

, if 0 < piat < 1

∫ 1
0
sia

(
1−Φ

(
1−µia(sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

))
dsia∫ 1

0

(
1−Φ

(
1−µia(sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

))
dsia

, if piat = 1.

(9)

Since respondents are interviewed every two years we can update the predictions according to whether they

are still without work limiting health problems. Then the likelihood function changes from (8) to

lnL =
∑

NoHealthProblems

ln Ŝia2 +
∑

HealthProblems

ln
(

1− Ŝia2

)
. (10)

From (6) and (7) one can calculate the optimism parameter γi as

Ŝia (t) = exp

(
−
∫ t

0

γ̂iλ0a (a+ r) dr

)
,

→ Ŝia (t) = exp (−γ̂i∆Λ0a (t)) .

Taking logs we can solve for γ̂i as

γ̂i = − ln Ŝiaτ
∆Λ0aτ

,

so that

Ŝia2 = Ŝ

(
∆Λ0a2
∆Λ0aτ

)
iaτ . (11)

Substituting (11) into the log-likelihood function (10) we have

lnL =
∑

NoHealth Pr oblems

ln Ŝ

(
∆Λ0a2
∆Λ0aτ

)
iaτ +

∑
Health Pr oblems

ln

(
1− Ŝ

(
∆Λ0a2
∆Λ0aτ

)
iaτ

)
. (12)

For further details on these derivations we refer to ?.

1.6 Estimation Results

We use a subset of the data to estimate the likelihood function in expression 12. We only use wave 1 and wave

2 in order to contain the computation burden. We only keep observations where respondents report no work

limiting health problem in wave 1. This reduces the data to 7001 observations, 3489 of which are males and

3512 of which are females.

We report estimation results for two separate models in table ??. The first is a restricted model where we
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set Ψ = 1 and estimate σ1 and σ2. In this case the mean of the prior distribution is equal to the realizations in

the health-tables. We report standard errors in parenthesis. Standard errors where obtained using a Bootstrap

routine on 500 subsamples with 400 observations each. The first column uses Health Table data using a 5th

degree polynomial to smooth the Kaplan-Meier estimate of the survival curve. The second column uses the

original Kaplan-Meier estimator for the health table survival curve. Finally, in column three we report the

estimation results for the unrestricted model where parameter Ψ is also estimated. We find that Ψ̂ = 2.37

which indicates that individuals are much more pessimistic about their health than the objective realization

rates in the health tables.

Finally, we construct the health curves using the estimates of the restricted model. The top panel of figure 3

displays the health survival probabilities (the probability of remaining without work limiting health problems)

for a 50 year old man. The blue line depicts the survival rates of an individual claiming a 100 percent change

of staying in good health (or a 0 percent chance of developing a work limiting health problem), whereas the

red line is an individual stating a 0 chance of staying in good health within the next 10 years. The green line is

the subjective survival rate of an individual with average expectations about her health. The solid black line is

the health-table survival rate. Figure 5 displays the analog results for 60 year old individuals.

In addition, we plot the confidence bounds of the health table estimates. We see that the confidence bounds

of the adjusted subjective health curves of individuals reporting piat = 0 or 1 lie well beyond the confidence

bounds of the health table estimates. Therefore, a model using the health table realizations as proxies for

subjective expectations neglects statistically significant information from subjective expectations.

Figures 4 and 6 plot the survival curves for the unrestricted model. We see that in this model agent are

more pessimistic, which is reflected in the estimate of Ψ̂ = 2.37 and the lower subjective survival curves. We

report the histogram of self reported health expectations, together with the histogram of self reported health

expectations after adjusting for focal point responses using the restricted model and the unrestricted model in

figure ??. We see that the focal point responses at 0 and 1 have disappeared and that the unrestricted model

exhibits the more pessimistic subjective health expectations.

1.7 Algorithm

We would like to thank Li Gan for making Matlab code available to us. We next describe our implementation

of the algorithm. This implementation differs from Gan’s code in the sense that we needed to construct the

outcome probabilities (recorded in Health Tables) first. We also restrict my attention to the hazard scaling

model.

1. Construct health tables using the population realizations of the hazard rate λ for each age group a of the

form

λ0a (a) =
d (a)

l (a)
.

2. Use individual data on subjective expectations about work limiting problems within the next 10 years,

denoted as ExpHealthProblems = (1− pia) , so that the probability of NOT having a work limiting
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health problem is pia. We interpret this also as the perceived survival rate (survival in ’good health’) of

individual i at age a.

3. Create dummy variable di,a,a+2 = 1 if individual i was in good health in period 1 at age a and is still in

good health in period 2 at age a+ 2 and di,a,a+2 = 0 otherwise.

4. Calculate the cumulative hazard rate Λ0a (a+ 10) up to the target age a + 10. The target age is a + 10

because pia is defined as the subjective belief about surviving 10 years without work limiting health

problems. We use

Λ0a (a+ 10) =
∑10

t=1
λ0a (a+ t) .

5. Calculate the cumulative hazard rate Λ0a (a+ 2) up to the next wave at age a+ 2 which is

Λ0a (a+ 2) =
∑2

t=1
λ0a (a+ t) .

6. Likelihood Routine:

(a) Solve for µia out of

sia =

[
Φ

(
1− µia
σ1

)
+ Φ

(
µia
σ1

)
− 1

]
[µia − σ1η (0, 1, µia, σ1)]+

[
1− Φ

(
1− µia
σ1

)]
. (13)

Where sia is a grid vector from [0, ..., 1] and therefor µia is also a vector.

(b) Solve for viat out of

exp (−ΨΛia (a+ 10)) = viat − σ2η (0, 1, viat, σ2) . (14)

(c) Solve for Ŝiat distinguishing piat = 0, 1, or interior from (9) .

(d) Build log-likelihood function from

lnL (σ1, σ2,Ψ) =

N∑
i=1

[
di,a,a+2 ln Ŝ

(
Λia(a+2)

Λia(a+10)

)
iaτ + (1− di,a,a+2) ln

(
1− ln Ŝ

(
Λia(a+2)

Λia(a+10)

)
iaτ

)]
.

(e) (
σ̂1, σ̂2, Ψ̂

)
= arg max

{σ1,σ2,Ψ}
lnL

(
σ1, σ2,Ψ|Ŝiat

)
.

The restricted model fixes Ψ = 1 and only estimates σ1 and σ2.

7. Construction of subjective health curves:

(a) Given
(
σ̂1, σ̂2, Ψ̂

)
solve for µia and viat from (13) and (14) .

(b) Calculate estimates for survival Ŝat (pat = 0) , Ŝat (pat = p̄) and Ŝ (pat = 1) from (9) , where p̄

is the average subjective probability of surviving in good health of the sample.
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(c) Calculate the cumulative hazard rates from the hazard rates starting at a certain base age a so that

Λ0a (a) = λ0a (a) ,

Λ0a (a+ 1) = λ0a (a) + λ0a (a+ 1) ,

...

Λ0a (a+ T ) =
∑T

t=0
λ0a (a+ t) .

Then define the following vector

Λ0aT = [Λ0a (a) ,Λ0a (a+ 1) , ...,Λ0a (a+ T )] .

So that the vector of survival rates in good health from age a to age a+ T is

S0aT = exp (−Λ0aT + λ0a (a)) .

The addition of the initial hazard rate normalizes the survival function S0aT to be equal to 1 at age a.

The zero subscripts denote the fact that these are mortality rates and survival rates of the population

and not of a particular individual. We denote vector S0aT to be the health table (population) survival

rate of an individual with age a up to age a+ T .

(d) we finally update the health table survival rate with the subjective survival probability from the

data piaτ using the hazard scaling model described earlier λia (a+ t) = γiλ0a (a+ t). Where the

estimate of γ for a particular individual i, aged a who answers with piaτ for the health expectations

questions is

γ̂i (piaτ ) = − ln Ŝiaτ (piaτ )

Λa0 (a+ 10)
,

where Ŝiaτ (piaτ ) was calculated in step (b) above.

(e) The vector of subjective survival rates in good health is then

SiaT (piaτ ) = exp

−γ̂i (piaτ )

S0aT︷ ︸︸ ︷
[−Λ0aT + λ0a (a)]

 ,

where we plot these rates for piaτ = 0, 1 and p̄ in figure 3 for a = 50 and in figure 5 for a = 60.
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1.8 Propositions6

Proposition 1 (Mean of the truncated normal) If x˜N
[
µ, σ2

]
and e and f are constant, then

E [x|e ≤ x ≤ f ] = µ− ση (e, f, µ, σ) , where

η (e, f, µ, σ) =
φ
(
f−u
σ

)
− φ

(
e−u
σ

)
Φ
(
f−u
σ

)
− Φ

(
e−u
σ

) .
Proposition 2 (Mean of the censored normal) If x∗˜N

[
µ, σ2

]
and

x =


e if x∗ ≤ e
x∗ if e ≤ x∗ ≤ f
f if f ≤ x∗

,

where e and f are constant, then

E [x] = Φ

(
e− µ
σ

)
e+

[
Φ

(
f − µ
σ

)
− Φ

(
e− µ
σ

)]
[µ− ση (e, f, µ, σ)] +

[
1− Φ

(
f − µ
σ

)]
f.

Proposition 3 When piat = 0, then

Ŝia =

∫ 1

0
sia

(
1− Φ

(
µia(sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

))
dsia∫ 1

0

(
1− Φ

(
µia(sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

))
dsia

.

Proposition 4 When piat = 1, then

Ŝia =

∫ 1

0
sia

(
1− Φ

(
1−µia(sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

))
dsia∫ 1

0

(
1− Φ

(
1−µia(sia,σ1)

σ1

)
φ
(
sia−via(Ψ,σ2)

σ2

))
dsia

.

References

6We briefly state the following propositions without proofs. Proofs can be found in ?.
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2 Appendix B: Additional Tables

15



RE-Logit FE-Logit RE-Probit
(1) (2) (3)

Very-Good-Health .294 .082 .119
(.115)∗∗ (.205) (.051)∗∗

Good-Health .738 .250 .333
(.122)∗∗∗ (.217) (.055)∗∗∗

Fair-Health 1.011 .519 .500
(.137)∗∗∗ (.245)∗∗ (.065)∗∗∗

Poor-Health 1.515 .850 .799
(.201)∗∗∗ (.352)∗∗ (.105)∗∗∗

Physical-Effort-Work -.194 -.218 -.096
(.069)∗∗∗ (.154) (.035)∗∗∗

PCA-Mobility .398 .391 .222
(.014)∗∗∗ (.034)∗∗∗ (.008)∗∗∗

PCA-Mental .210 .143 .117
(.017)∗∗∗ (.032)∗∗∗ (.009)∗∗∗

PCA-Heart-Stroke -.070 -.059 -.035
(.020)∗∗∗ (.039) (.011)∗∗∗

PCA-Cancer .018 .011 .010
(.021) (.037) (.011)

PCA-Respiratory .043 .035 .026
(.022)∗ (.037) (.011)∗∗

PCA-Add-Cancer -.008 -.022 -.004
(.022) (.038) (.011)

PCA-Add-Mental .006 .034 .002
(.022) (.038) (.011)

PCA-No-Heart -.043 -.00005 -.025
(.020)∗∗ (.036) (.011)∗∗

PCA-No-Arthritis .081 .049 .047
(.023)∗∗∗ (.039) (.012)∗∗∗

PCA-Hips .046 .023 .026
(.024)∗ (.043) (.013)∗∗

PCA-SocialInteraction -.077 -.083 -.039
(.024)∗∗∗ (.036)∗∗ (.013)∗∗∗

PCA-Add-Mobility -.079 -.063 -.035
(.023)∗∗∗ (.040) (.012)∗∗∗

e(N) 22199 3333 22199

Table 1: Non linear panel, wave (1-6): Dependent variable is Health-Problem. The prefix PCA refers to
variables formed using Principal Components Analysis where we summarize a series of 35 health indicator
variables into 12 factor variables. Significance levels are denoted *, **, and *** for 0.10, 0.05, and 0.01,
respectively.
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RE-Logit RE-Probit
(1) (2)

L2.Very-Good-Health .361 .141
(.185)∗ (.085)∗

L2.Good-Health .569 .246
(.208)∗∗∗ (.096)∗∗

L2.Fair-Health .643 .287
(.244)∗∗∗ (.119)∗∗

L2.Poor-Health .791 .415
(.404)∗∗ (.212)∗∗

L2.Physical-Effort-Work -.145 -.057
(.167) (.085)

L2.PCA-Mobility .266 .147
(.031)∗∗∗ (.016)∗∗∗

L2.PCA-Mental .180 .097
(.036)∗∗∗ (.018)∗∗∗

L2.PCA-Heart-Stroke -.048 -.016
(.057) (.026)

L2.PCA-Cancer -.026 -.020
(.059) (.027)

L2.PCA-Respiratory .015 .012
(.052) (.024)

L2.PCA-Add-Cancer -.083 -.040
(.057) (.026)

L2.PCA-Add-Mental .080 .038
(.040)∗∗ (.021)∗

L2.PCA-No-Heart -.081 -.039
(.040)∗∗ (.020)∗

L2.PCA-No-Arthritis .022 .012
(.041) (.021)

L2.PCA-Hips .031 .017
(.043) (.022)

L2.PCA-SocialInteraction -.061 -.029
(.039) (.021)

L2.PCA-Add-Mobility -.086 -.038
(.041)∗∗ (.021)∗

e(N) 10128 10128

Table 2: Dynamic non linear panel, wave (2-6): Dependent variable is Health-Problem. The prefix L2 refers
to 2-year lagged variables. The prefix PCA refers to variables formed using Principal Components Analysis
where we summarize a series of 35 health indicator variables into 12 factor variables. Significance levels are
denoted *, **, and *** for 0.10, 0.05, and 0.01, respectively.

Wave Year Number of Obs. % Died %

1 1992 12, 652 9.31 229 1.8
2 1994 19, 871 14.62 1, 061 5.3
3 1996 19, 052 14.02 1, 224 6.4
4 1998 22, 608 16.64 1, 321 5.8
5 2000 20, 900 15.38 1, 411 6.8
6 2002 19, 577 14.40 1, 106 5.6
7 2004 21, 245 15.63 − −
Total − 135, 905 100.00 6, 352

Table 3: Observations by Wave and Number of Deceased
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3 Appendix C: Additional Figures

18



40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4
Health−Problem (HP) Hazard Rate

Male
Female

40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6
Male: Health−Problem Hazard Rate

Data
5th order polynomial

40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6
Female: Health−Problem Hazard Rate

Figure 1: Work Limiting Health Problems Hazard Rate. Original Data from RAND-HRS,Wave 1-6. Fitted
function is a 5th order polynomial, fitted with least squares.
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Figure 2: ’Recovery from Work Limiting Health Problems’ Hazard Rate. Original Data from RAND-
HRS,Wave 1-6. Fitted function is a 5th order polynomial, fitted with least squares.
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Figure 3: Health "Survival" Probabilites of a 50 Year Old.
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Figure 4: Health "Survival" Probabilites of a 50 Year Old for the Unrestricted Model.
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Figure 5: Health "Survival" Probabilites of a 60 Year Old.
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Health "Survival" Curves: Males age 60: Unrestricted Model (3 parameters)
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Figure 6: Health "Survival" Probabilities of a 60 Year Old for the Unrestricted Model.
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