Health Risk and Insurance Over the Lifecycle

Juergen Jung Towson University, Maryland Chung Tran Australian National University

CBE - Conference May 2015

Disclaimer

This project was supported by the Agency for Healthcare Research and Quality (AHRQ, Grant No.: R03HS019796), the Australian Research Council (ARC, Grant No.: CE110001029), CBE-Towson University Summer Research Support, and funds from the Centers for Medicare & Medicaid Services, Office of the Actuary (CMS/OACT).

The content is solely the responsibility of the authors and does not represent the official views of the funding institutions.

Introduction

U.S. Medical vs. Non-Medical Consumption

Figure 1: MEPS 1996-2007

Introduction

Healthcare Financing in OECD Economies

Figure 2: OECD (2004)

U.S. Health Spending

Figure 3: CBO (2010)

Our Research Program

- Develop macroeconomic models with micro-foundations of health
- O Analyze economic aspects of health-related behavior
- Study implications of healthcare policies
 - The distributional effects: health inequality and wealth inequality
 - The macroeconomic aggregates and welfare.

This Paper

Develop a stochastic dynamic general equilibrium overlapping generations model with

- endogenous health expenditures and insurance choice
- and a realistic structure of health insurance systems

that accounts for the patterns of

- health expenditures and insurance over the life cycle
- ² the distribution of income and health expenditures observed in the data
- **Goal**: quantify the effects of social health insurance on
 - macroeconomic aggregates and
 - ø welfare.

Results Preview

• Lifecycle health risk induces demand for health insurance

• Private health insurance: very limited

- Competitive markets fail to insure lifecycle health risk
- Introduction of market regulations improves
 - insurance coverage (up to 70%)
 - small welfare gains(2.3%)

• Public (social) health insurance: important

- The European-style heath insurance system
 - Aggregate output loss (9%)
 - but large welfare gains (5.5%)
- The American-style insurance system: Mix of public and private insurance
 - Aggregate output loss (7.5%)
 - and welfare gain (between 3 and 4%)

Related Literature

- O Micro-health economics
 - Grossman (1972a,1972b), Grossman (2000)
 - Pauly(1974), Rothschild and Stiglitz (1976)
 - Besley (1989), Selden (1993), Blomqvist and Johansson (1997)

Quantitative macroeconomics/public finance

- Ayagari (1994), Imrohoroglu et al (1995), Hugget (1996)
- Macro-health economics:
 - Exogeneous health expenditure shocks: Kotlikoff (1988), Leven (1985), Palumbo (1999), Attanasio, Kitao and Violante (2008), Jeske and Kitao (2009), Pashchenko and Porapakkarm (2010), Janicki (2011)
 - Endogenous health expenditures and insurance: Suen (2006), Feng (2009), and Jung and Tran (2008, 2010, 2013)

MODEL

The Model: Bewley (1986) and Grossman (1972)

• Overlapping generations model with

- heterogeneous agents
 - lifespan: age 20 to 90
 - idiosyncratic shocks: labor productivity and health shocks
- health capital accumulation
 - health as consumption and investment goods
 - endogenous health spending
 - endogenous health insurance choice
- Maket structure: goods, capital, labor markets, and incomplete financial markets
- Government-run health insurance systems
- Dynamic stochastic general equilibrium

The Model: Preferences and technology

• Preferences:

$$u\left(c_{j},l_{j},h_{j}\right)$$

• Health capital:

$$h_j = h\left(m_j, h_{j-1}, \delta^h, \epsilon^h_j\right)$$

$$e_j = e\left(\vartheta, h_j, \epsilon_j^l\right)$$

Health and labor income shocks:

$$\Pr\left(\epsilon_{j+1}^{h}|\epsilon_{j}^{h}\right)\in \Pi_{j}^{h} \text{ and } \Pr\left(\epsilon_{j+1}^{\prime}|\epsilon_{j}^{\prime}\right)\in \Pi_{j}^{\prime}$$

The Model: Health Insurance Arrangements

- Private health insurance
- Public (social) health insurance
- Health insurance status:

$$in_{j} = \begin{cases} 0 & \text{if no insurance} \\ 1 & \text{if private insurance} \\ 2 & \text{if public insurance} \end{cases}$$

The Model: Out-of-pocket Health Spending

• Agent's out-of-pocket health expenditures depend on insurance state

$$o(m_j) = \begin{cases} p_m^{in_j} \times m_j, & \text{if } in_j = 0\\ \rho^{in_j} \left(p_m^{in_j} \times m_j \right), & \text{if } in_j > 0 \end{cases}$$

The Model: Technology and Firms

• Final goods C production sector for price $p_C = 1$:

$$\max_{\{K, L\}} \left\{ F(K, L) - qK - wL \right\}$$

• Medical services M production sector for price p_m : $\max_{\{K_m, L_m\}} \{p_m F_m(K_m, L_m) - qK_m - wL_m\}$

- p_m is a base price for medical services
- Price paid by households depends on insurance state:

$$p_j^{in_j} = \left(1 +
u^{in_j}
ight) p_m$$

• ν^{in_j} is an insurance state dependent markup factor • Profits are redistributed to all surviving agents

The Model: Household Problem - Timing

Insurance Sector

$$(1 + \omega^{\text{in}}) \sum_{j=1}^{J} \mu_j \int \left[\mathbf{1}_{\left[in_j(x_j)=1\right]} \left(1 - \rho^{\text{in}}\right) p_m^{\text{in}} m_j(x_j) \right] d\Lambda(x_j)$$
$$= R \sum_{j=1}^{J} \mu_j \int \left(\mathbf{1}_{\left[in_j(x_j)=1\right]} \text{prem}^{\text{in}} \right) d\Lambda(x_j) ,$$

Government Budget

$$G + T^{\mathsf{SI}} + T^{Med} = \sum_{j=1}^{J} \mu_j \int \left[\tau^{\mathsf{C}} c(x_j) + tax_j(x_j) \right] d\Lambda(x_j),$$

where $T^{\mathsf{SI}} = \sum_{j=1}^{J} \mu_j \int t_j^{\mathsf{SI}}(x_j) d\Lambda(x_j)$ and
 $T^{\mathsf{Med}} = \sum_{j=1}^{J} \mu_j \int (1 - \rho^{Med}) p_m^{Med} m_j(x_j) d\Lambda(x_j) - \sum_{j=1}^{J} \mu_j \int \operatorname{prem}^{Med}(x_j) d\Lambda(x_j).$

Pensions and Bequests

• Pensions:

$$\sum_{j=J_{1}+1}^{J} \mu_{j} \int t_{j}^{\mathsf{Soc}}(x_{j}) d\Lambda(x_{j})$$
$$= \sum_{j=1}^{J_{1}} \mu_{j} \int \tau^{\mathsf{Soc}} \times (e_{j}(x_{j}) \times l_{j}(x_{j}) \times w) d\Lambda(x_{j})$$

• Accidental Bequests:

$$\sum_{j=1}^{J_{1}} \mu_{j} \int t_{j}^{\text{Beq}}(x_{j}) \, d\Lambda(x_{j}) = \sum_{j=1}^{J} \int \tilde{\mu}_{j} a_{j}(x_{j}) \, d\Lambda(x_{j})$$

A Competitive Equilibrium

Given the transition probability matrices and the exogeneous government policies, a competitive equilibrium is a collection of sequences of distributions of household decisions, aggregate capital stocks of physical and human capital, and market prices such that

- Agents solve the consumer problem
- The F.O.Cs of firms hold
- The budget constraints of insurances companies hold
- All markets clear
- All government programs and the general budget clear
- The distribution is stationary

CALIBRATION

Parameterization and Calibration

- Goal: to match U.S. data pre-ACA (before 2010)
- Data sources:
 - MEPS: labor supply, health shocks, health expenditures, coinsurance rates
 - PSID: initial asset distribution
 - CENSUS: demographic profiles
 - Previous studies: income process, labor shocks, aggregates

The U.S. Health Insurance System

- Mixed system:
 - Private health insurance for working population
 - Individual based health insurance (IHI)
 - Group based health insurance (GHI)
 - Public health insurance
 - Medicare for retirees
 - Medicaid for the poor: 2/3 is retirees
- Key Facts:
 - Low coverage: 47 million uninsured in 2010 (\approx 15%)
 - High cost: 16% of GDP on health in 2010 and close to 20% by 2015

Moment Matching: Health Expenditures

Figure 4: Moment matching: Model vs. Data

Jung and Tran	(TU and ANU)	
---------------	--------------	--

Moment Matching: Insurance Take-up Rates

Figure 5: Moment matching: Model vs. Data

Jung and Tran (TU and ANU)

Health Risk

2015 25 / 41

Income Distribution

Income distribution SS1 with FPL

Figure 6: Moment matching: Model vs. Data

Calibration: Matched Moments

Moments	Model	Data	Source
- Medical expenses HH income	17.6%	17.07%	CMS communication
- Workers IHI	6.7%	7.6%	MEPS 1999/2009
- Workers IHI	62.2%	63.6%	MEPS 1999/2009
- Workers Medicaid	9.0%	9.2%	MEPS 1999/2009
- Capital output ratio: K/Y	2.9	2.6 - 3	NIPA
- Interest rate: R	4.2%	4%	NIPA
- Size of Social Security: SocSec/Y	5.9%	5%	OMB 2008
- Size of Medicare: Medicare/Y	3.1%	2.5 - 3.1%	U.S. Department of Health 2007
- Payroll tax Social Security: $ au^{Soc}$	9.4%	10 - 12%	IRS
- Consumption tax: $ au^{C}$	5.0%	5.7%	Mendoza et al. (1994)
- Payroll tax Medicare: $ au^{Med}$	2.9%	1.5-2.9%	Social Security Update (2007)
	21.8%	28.3%	Stephenson (1998) and
- Total tax revenue/ r			BarroSahasakul (1986)
- Medical spending profile		see figure	
- Medical spending distribution		see figure	
- Insurance take-up ratios		see figure	
Total number of moments			

EXPERIMENTS

Experiments

- Construct a benchmark economy with no health insurance for comparison
- Introduce alternative insurance regimes
 - O Private insurance
 - O Public health insurance
 - O A mix of private and public health inusurance
- **Quantify the macroeconomic and welfare imiplications**

Private Insurance

- Unregulated market (IHI)
 - Price discrimination: age and health status $prem = prem(j, h_j)$
 - No government subsidy
- Regulated market (GHI)
 - No price discrimination: community rating
 - Premium payment is tax deductible

Private Insurance: Aggregates and Welfare

	[1] No Ins.	[2] Private Health Insurance Only		
		(a) Unregulated	(b) Regulated	
Insured (%)	0.00	8.03	70.62	
+ IHI (%)	0.00	9.76	0.00	
+ GHI (%)	0.00	0.00	70.62	
Capital (K)	100.00	100.15	99.40	
Output (GDP)	100.00	100.36	100.75	
Welfare	0.00	-0.26	2.31	

Table 1: The Effects of Private Health Insurance.

Public Insurance

- The European/Canadian/Australian health insurance system
 - Mandatory membership
 - Open enrollment
 - Community rating
 - financed by payroll or consumption tax

Public Insurance: Aggregate and Welfare

	[1] No Ins.	[3] Public Health Insurance Only		
		(a) Medicaid for all	(b) Medicare for all	
Insured (%):	0.00	100.00	100.00	
+ Medicaid (%)	0.00	100.00	00.00	
+ Medicare (%)	0.00	00.00	100.00	
Cons. tax - τ_C (%)	4.31	23.36	17.02	
Capital (K_c)	100.00	86.11	86.71	
Output (Y_c)	100.00	90.42	91.41	
Welfare	0.00	5.59	5.81	

Table 2: The Effects of Social Health Insurance

Mix of Private and Public Insurance

• The U.S. health insurance system

- Partial coverage
- Private insurance for workers
- Public insurance for retirees and the poor

Two arrangements

- Pre-ACA
- Post-ACA

Mix of Private and Public Insurance

	[1] No Ins.	[4] Public and Private Ins.		
		(a) Pre-ACA	(b) After-ACA	
Insured (%):	0.00	76.69	99.58	
+ IHI (%)	0.00	6.53	22.46	
+ GHI (%)	0.00	60.60	63.08	
+ Medicaid (%)	0.00	9.56	14.04	
+ Medicare (%)	0.00	17.68	17.68	
Capital (K _c)	100.00	85.72	84.86	
Output (Y_c)	100.00	92.40	90.55	
Welfare	0.00	4.06	3.71	

Table 3: The effects of mixed public and private health insurance systems

Consumption Variation

Coefficient of variation of C by skill group

Analysis

Out-of-Pocket Health Spending Variation

Coefficient of variation of OOP expenses by skill group

Health Capital Variation

Coefficient of variation of H capital by skill group

Insurance Take-up Variation

Coefficient of variation of income by skill group

Analysis

Labor Variation

Coefficient of variation of Labor by skill group

Conclusion

- Construct a heterogeneous agents macro-model with health as a durable good
- Account for lifecycle patterns of health expenditures and private insurance take up rates
- Quantify the macroeconomic and distributional effects of different health insurance systems