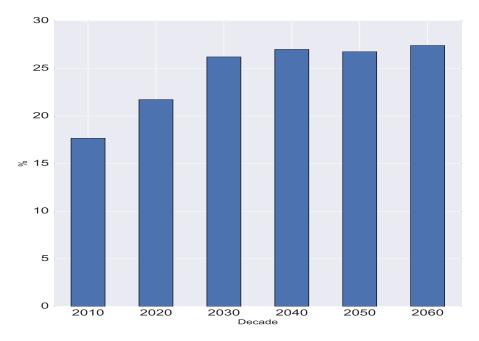
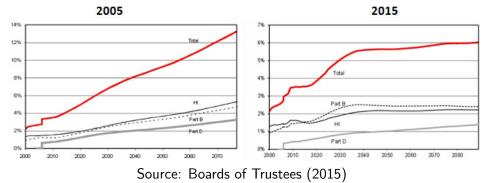
Aging and Health Financing in the US: A General Equilibrium Analysis

Juergen Jung Chung Tran Towson University Australian National University

> Matthew Chambers Towson University

Barcelona GSE Summer Forum, June 2016


Disclaimer


- This project was supported by funds from the Centers for Medicare & Medicaid Services, Office of the Actuary (CMS/OACT).
- The content is solely the responsibility of the authors and does not represent the official views of the funding institutions.

Health Spending by Financing Source

Population > 65 (in % of Working Age Population)

Medicare Expenditures As Percentage of Gross Domestic Product

Comments

The long-term fiscal outlook in the US

- Sensitive to assumptions about how health care spending (CBO (2014))
- Fiscal gap between 6.1 percent and 9.0 percent of GDP (Auerbach and Gale (2013))
- CBO's projections abstract from microfoundations of health spending and financing
 - Lifecycle profiles of health-related behavior
 - Behavioral responses to demographic shift and policy reforms

This paper

- Quantify the effects of population aging on healthcare spending and financing in US
- 2 Assess the implications of the ACA reform in this aging context

How?

A Bewley-Grossman model of health capital with heterogenous agents

- idiosyncratic income and health shocks
- incomplete markets
- Microfoundations of health-related behavior
 - demand for medical services and health insurance
- The US institutional details:
 - Medicare and Medicaid
 - Group-based (GHI) and Individual-based insurance (IHI)
- Calibrate the model to US data before the ACA reform
 - Medical Expenditure Panel Survey
 - Population projections by CMS/OACT

Results

1 Without ACA: Aging leads to large increases in medical spending

- ↑ Health expenditures by 37 percent (2060 demographic structure)
- \uparrow Medicare by 50 percent
- \blacksquare \uparrow Insurance take-up for workers from 77 to 81 percent

2 Introduction of ACA

- increases the fraction of insured workers
 - up to 99 percent
 - expansion of Medicaid and IHI
 - ACA stabilizes insurance take-up for all simulated periods
- mitigates the increase in health expenditures
 - \blacksquare \downarrow health expenditures by 2 percent
 - move uninsured workers into Medicaid
- increases fiscal cost mainly via the expansion of Medicaid
- aging itself diminishes impact of ACA

Related Literature

- Economics of aging
 - Wise (2005), Bloom, Canning and Fink (2010) and De la Croix (2013) for an overview
 - Aging and fiscal policy:
 - Deterministic: Auerbach and Kotlikoff (1987), Faruqee (2002), Kotlikoff, Smetters and Walliser (2007)
 - Stochastic: De Nardi, Imrohoroğlu and Sargent (1999), Braun and Joines (2015), Kitao (2015) and Nishiyama (2015)
- 2 Quantitative macroeconomics/public finance
 - Pioneers: Bewley (1986), Huggett (1993) and Aiyagari (1994)
 - Health risk and precautionary savings: Kotlikoff (1988), Levin (1995), Hubbard, Skinner and Zeldes (1995) and Palumbo (1999).
 - Large scale models with health shocks and health policy: Jeske and Kitao (2009), Pashchenko and Porapakkarm (2013), Janicki (2014), Kopecky and Koreshkova (2014), Capatina (2015)

Related Literature (cont.)

3 Models explaining health spending within Macro frameworks:

- Lifecycle models that analyze the determinants of rising health care cost in the US
 - Features: technological progress, economic growth and social security (Suen (2006), Hall and Jones (2007), Fonseca et al. (2013) and Zhao (2014))
- This paper: extends our previous framework in Jung and Tran (2016)
 - a rich institutional framework and the ACA
 - altering the demographic structure in the model to mimic the process of population aging
 - the effects of aging on health care cost and health financing

The Model: Bewley - Grossman Framework

Overlapping Generations (OLG) Model

- Lifespan: age 20 to 90
- Heterogeneous agents
 - Idiosyncratic shocks: labor productivity and health shocks
 - Health as consumption and investment goods
 - Endogenous health spending
 - Choice of private health insurance
- Market structure: consumption goods, health care goods, capital, labor markets, and incomplete financial markets
- Fiscal policy: income tax, social security, health insurance, minimum consumption

The Model: Preferences and Technology

Preferences:

$$u(c, l, h) = \frac{\left(\left(c^{\eta} \times \left(1 - l - \mathbb{1}_{[l>0]}\overline{l}_{j}\right)^{1-\eta}\right)^{\kappa} \times h^{1-\kappa}\right)^{1-\sigma}}{1-\sigma}$$

Health capital:

$$h_{j} = \overbrace{\phi_{j}m_{j}^{\xi}}^{\text{Investment}} + \overbrace{\left(1-\delta_{j}^{h}\right)h_{j-1}}^{\text{Trend}} + \overbrace{\epsilon_{j}^{h}}^{\text{Disturbance}}$$

- Human capital ("labor"): $e_j = e\left(\vartheta, h_j, \epsilon_j^l\right)$
- Health, labor income and employer insurance shocks:

$$\Pr\left(\epsilon_{j+1}^{h}|\epsilon_{j}^{h}\right)\in \Pi_{j}^{h} \text{ , } \Pr\left(\epsilon_{j+1}^{\prime}|\epsilon_{j}^{\prime}\right)\in \Pi_{j}^{\prime} \text{ and } \Pr\left(\epsilon_{j+1}^{GHI}|\epsilon_{j}^{GHI}\right)\in \Pi_{j,\vartheta}^{GHI}$$

The Model: Health Insurance Arrangements

- Private health insurance: group (GHI) or individual (IHI)
- Public (social) health insurance: Medicaid or Medicare
- Health insurance status:

$$in_{j} = \begin{cases} 0 & \text{if No insurance,} \\ 1 & \text{if Individual health insurance IHI,} \\ 2 & \text{if Group health insurance GHI,} \\ 3 & \text{if Medicaid.} \end{cases}$$

The Model: Out-of-pocket Health Spending

Agent's out-of-pocket health expenditures depend on insurance state

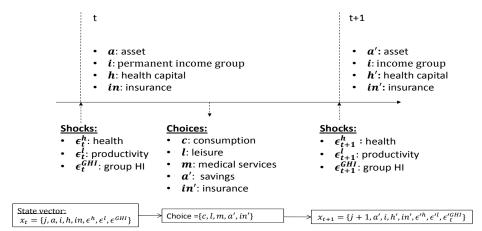
$$o(m_j) = \begin{cases} p_m^{in_j} \times m_j, & \text{if } in_j = 0\\ \rho^{in_j} \left(p_m^{in_j} \times m_j \right), & \text{if } in_j > 0 \end{cases}$$

The Model: Technology and Firms

• Final goods C production sector for price $p_C = 1$:

$$\max_{\{K, L\}} \left\{ F(K, L) - qK - wL \right\}$$

Medical services M production sector for price p_m:


$$\max_{\{K_m, L_m\}} \{ p_m F_m (K_m, L_m) - q K_m - w L_m \}$$

p_m is a base price for medical services
Price paid by households depends on insurance state:

$$p_j^{\textit{in}_j} = \left(1 +
u^{\textit{in}_j}
ight) p_m$$

\$\nu\$^{in_j}\$ is an insurance state dependent markup factor
Profits are redistributed to all surviving agents

The Model: Household Problem

Remaining Parts

- Insurance companies GHI and IHI clear zero profit condition Details
- Government budget constraint clears Details
- Pension program financed via payroll tax Details
- Accidental bequests to surviving individuals Details

A Competitive Equilibrium

- Given the transition probability matrices and the exogeneous government policies, a competitive equilibrium is a collection of sequences of distributions of household decisions, aggregate capital stocks of physical and human capital, and market prices such that
 - Agents solve the consumer problem
 - The F.O.Cs of firms hold
 - The budget constraints of insurances companies hold
 - All markets clear
 - All government programs and the general budget clear
 - The distribution is stationary

Calibration

Parameterization and Calibration

- Goal: to match U.S. data pre-ACA (before 2010)
- Data sources:
 - MEPS: labor supply, health shocks, health expenditures, coinsurance rates
 - PSID: initial asset distribution
 - CMS: demographic profiles
 - Previous studies: income process, labor shocks, aggregates

Health Capital

Health capital accumulation:

$$h_{j} = \overbrace{\phi_{j}m_{j}^{\xi}}^{\text{Investment}} + \overbrace{\left(1-\delta_{j}^{h}\right)h_{j-1}}^{\text{Trend}} + \overbrace{\epsilon_{j}^{h}}^{\text{Disturbance}}$$

Health capital measure in MEPS: SF 12-v2

• $\delta^h \rightarrow \text{MEPS}|\text{insured \& 0-medical spenders} \rightarrow \bar{h}_j = \overbrace{\left(1 - \delta^h_j\right)\bar{h}_{j-1}}^{\text{Trend}}$

• ϵ^h and Π^h from MEPS

Calibration of Health Shocks

MEPS data split each cohort j into 4 risk groups

- Average health capital per risk group: $\left\{ \bar{h}_{j,d}^{\max} > \bar{h}_{j,d}^3 > \bar{h}_{j,d}^2 > \bar{h}_{j,d}^1 > \bar{h}_{j,d}^1 \right\}$
- Define shock magnitude:

$$\epsilon_{j}^{h} = \left\{0, \frac{\bar{h}_{j,d}^{3} - \bar{h}_{j,d}^{\max}}{\bar{h}_{j,d}^{\max}}, \frac{\bar{h}_{j,d}^{2} - \bar{h}_{j,d}^{\max}}{\bar{h}_{j,d}^{\max}}, \frac{\bar{h}_{j,d}^{1} - \bar{h}_{j,d}^{\max}}{\bar{h}_{j,d}^{\max}}\right\} \times h_{m}^{\max}$$

Assumption: Associate resulting health shock with risk group by age

Non-parametric estimation of transition probabilities health shocks

Human Capital

Parameterization: Production Function

Final goods production:

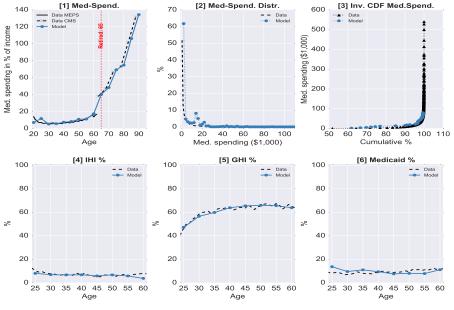
$$F(K,L) = AK^{\alpha}L^{1-\alpha}$$

Medical services production:

$$F_m(K_m, L_m) = A_m K_m^{\alpha_m} L_m^{1-\alpha_m}$$

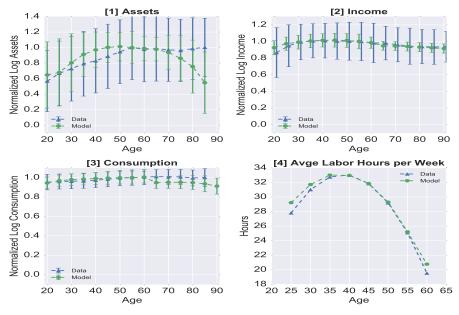
Parameters from other studies

• A = 1 and A_m calibrated to match aggregate health spending

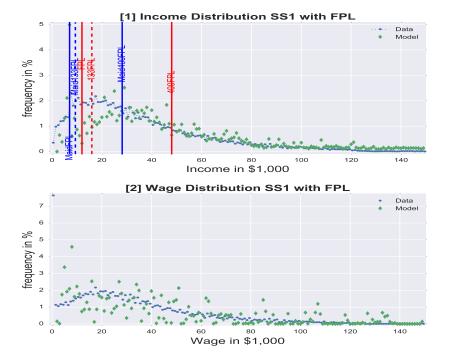

Calibration: Price of Medical Services

- Medicare/Medicaid reimbursement rates (to providers) are about 70% of private HI rates (CMS)
- Average price markup for uninsured around 60% (Brown (2006))
- Large GHI can negotiate favorable prices (Phelps (2003))
- Price vector:

 $\left[p_{m}^{\text{noIns}}, p_{m}^{\text{IHI}}, p_{m}^{\text{GHI}}, p_{m}^{\text{Maid}}, p_{m}^{\text{Mcare}}\right] = (1 + [0.70, 0.25, 0.10, 0.0, -0.10]) \times p_{m}$


More Calibration Details

Model vs. Data

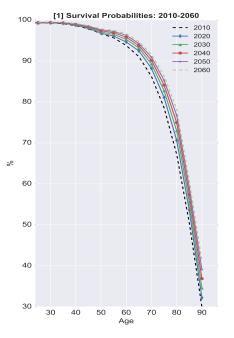


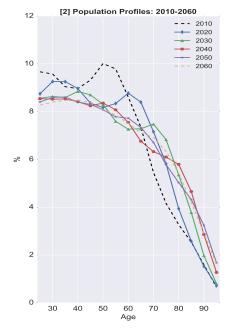
Source: MEPS 2000-2009

Model vs. Data

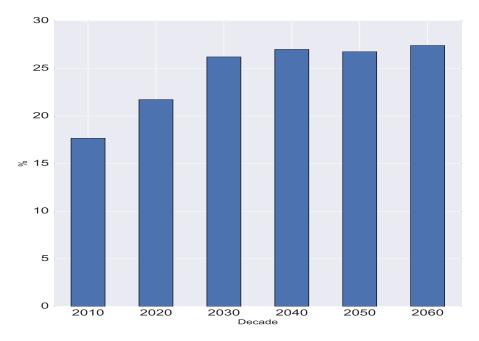
Source: PSID 1984-2007 and CPS 1999-2009

Calibration: Matched Moments


Moments	Model	Data	Source	
- Medical Expenses HH Income	17.6%	17.07%	CMS communication	
- Workers IHI	6.7%	7.6%	MEPS 1999/2009	
- Workers IHI	62.2%	63.6%	MEPS 1999/2009	
- Workers Medicaid	9.0%	9.2%	MEPS 1999/2009	
- Capital Output Ratio: K/Y	2.9	2.6 - 3	NIPA	
- Interest Rate: R	4.2%	4%	NIPA	
- Size of Soc.I Security: SocSec/Y	5.9%	5%	OMB 2008	
- Medicare/Y	3.1%	2.5-3.1%	U.S. Dept of Health 2007	
- Payroll Tax Social Security: $ au^{Soc}$	9.4%	10-12%	IRS	
- Consumption Tax: $ au^{C}$	5.0%	5.7%	Mendoza et al. (1994)	
- Payroll Tax Medicare: $ au^{Med}$	2.9%	1.5-2.9%	Soc. Sec. Update (2007)	
- Total Tax Revenue/Y	21.8%	28.3%	Stephenson (1998)	
- Medical spending profile		see figure		
- Medical spending distribution		see figure		
- Insurance take-up ratios		see figure		


Aging

Experiments


- **1** Benchmark economy in 2010 \rightarrow fix baseline parameters
- Change the survival probabilities to match the 10-year average demographic structure of CMS/OACT population forecasts for 2030, 2040, 2050, 2060
- **3** Each time fix the particular demographic structure of a given decennial and resolve (using Benchmark paras) for a new steady
- ⁴ "Updating" the age profile essentially creates a larger share of older individuals in the model by appropriately increasing individual survival probabilities
- 5 We do NOT solve for the transition path from 2010 to 2060!

Survival Probabilities and Size of Cohorts

Population > 65 (in % of Working Age Population)

Aging: Medicare and Social Security

- Balanced budget condition (no debt in model)
- \blacksquare Medicare and Social Security will grow if fraction of old increases \rightarrow needs to be financed
- Assumption:
 - Fix Medicare payroll tax at benchmark level of 2.9%
 - \rightarrow Medicare is part of the overall gov't budget constraint
 - \rightarrow adjust $\tau_{\it C}$ to cover the extra Medicare spending
 - \blacksquare Social security is self-financing (by assumption) \rightarrow increase τ_{SS}

Aging: Medicare and Social Security

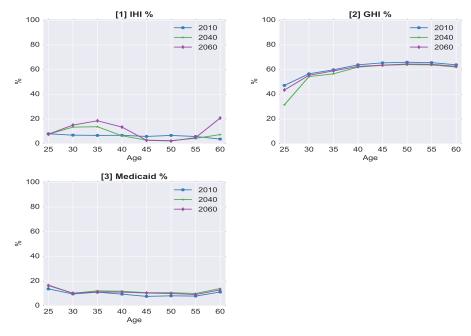
	2010	2020	2030	2040	2050	2060
Medicare in %:	17.68	21.74	26.21	27.01	26.76	27.42
Cons. tax: τ^c %	5.00	7.21	10.59	12.10	12.08	12.43
Soc. sec. tax: $ au_{SS}$ %	9.38	12.19	15.61	16.23	16.04	16.58
Medicare tax: $ au_{\it Med}$ %	2.90	2.90	2.90	2.90	2.90	2.90

Aging: Effect on Workers

The fraction of insured workers is fairly constant at around 81 percent

■ IHI share ↑

- \blacksquare Higher survival prob. \rightarrow reason to invest more in health \rightarrow makes having IHI more desirable
- \blacksquare Marginal low risk types join \rightarrow premiums \downarrow 4 percent compared to the benchmark
- \blacksquare 2040 is different: A high risk group type collapses and produces many uninsured in that age/health cohort \to IHI market shrinks


• GHI share \downarrow

- \blacksquare Increased premiums in GHI market around 2040 \rightarrow drop in coverage to 76
- The shrinking + aging causes a worsening of the GHI risk sharing pool \rightarrow GHI premiums \uparrow
- Medicaid \uparrow because FPL is tied to median income

Aging: Effect on Workers

	2010	2020	2030	2040	2050	2060
IHI in %:	6.43	13.06	10.71	7.39	10.04	10.70
GHI in %:	61.02	62.56	60.05	56.96	59.29	59.27
Medicaid in %:	9.78	10.20	11.56	12.01	11.39	11.42
Workers Insured %:	77.23	85.81	82.33	76.36	80.71	81.39

Insurance Take-Up: Aging

Aging: Health Expenditures

- Retirees face larger health shocks
- More retirees \rightarrow more medical spending
- However, aging causes private insurance premiums \downarrow as individuals become healthier \rightarrow longer optimization horizon

Aging: Health Expenditures

	2010	2020	2030	2040	2050	2060
Med. quantity: M	100.00	118.28	131.61	138.26	141.15	144.13
Med. spend.: $p_m M$	100.00	114.58	125.73	132.31	134.35	136.95
M. sp.: no Ins	100.00	69.87	80.90	100.27	85.66	84.96
M. sp.: IHI	100.00	170.05	131.16	98.14	131.46	134.75
M. sp.: GHI	100.00	106.41	98.16	95.45	99.84	100.56
M. sp.: Maid	100.00	110.78	118.26	121.58	119.21	120.93
M. sp.: Old	100.00	132.48	166.84	181.55	184.92	190.45

Aging: Aggregate Variables

- \blacksquare Average worker is older \rightarrow earning a higher level of labor income
- Decrease in workers \rightarrow restricts the supply of labor \rightarrow wages[↑]
- \blacksquare Older households hold more assets/capital which increases the supply of capital \rightarrow interest rates \downarrow
- Shift funds from general household consumption into the consumption of medical services
- Medical sector grows

Aging: Aggregate Variables

	2010	2020	2030	2040	2050	2060
GDP:	100.00	105.50	101.73	101.20	103.86	105.27
Output: Y_c Output: $p_m Y_m$	100.00 100.00	103.75 118.50	97.68 131.88	96.17 138.58	98.79 141.55	99.99 144.60
Capital: <i>K_c</i> Capital: <i>K_m</i>	100.00 100.00	105.58 120.59	99.64 134.53	98.31 141.66	101.50 145.43	103.14 149.15
Health capital: <i>H</i>	100.00	110.06	111.48	110.85	112.55	114.44
Human capital: <i>HK_c</i>	100.00	102.87	96.73	95.14	97.48	98.47
Human capital: <i>HK_m</i>	100.00	117.48	130.59	137.09	139.68	142.40
Consumption: C	100.00	104.18	97.30	95.17	97.33	97.90
Med. quantity: M	100.00	118.28	131.61	138.26	141.15	144.13

Aging and the ACA

Implementation of ACA

- Medicaid Expansion: eligibility threshold to 133 percent of the FPL and remove asset test
- Subsidies: Income is between 133 and 400 percent of the FPL are eligible to buy health insurance through insurance exchanges at subsidized rates according to

$$sub_{j} = \begin{cases} \max(0, \operatorname{prem}_{j}^{|\mathsf{H}|} - 0.03\tilde{y}_{j}) \text{ if } 1.33 \; \mathsf{FPL}_{\mathsf{Maid}} \leq \tilde{y}_{j} < 1.5 \; \mathsf{FPL}_{\mathsf{Maid}} \\ \max(0, \operatorname{prem}_{j}^{|\mathsf{H}|} - 0.04\tilde{y}_{j}) \; \text{if } 1.5 \; \mathsf{FPL}_{\mathsf{Maid}} \leq \tilde{y}_{j} < 2.0 \; \mathsf{FPL}_{\mathsf{Maid}} \\ \max(0, \operatorname{prem}_{j}^{|\mathsf{H}|} - 0.06\tilde{y}_{j}) \; \text{if } 2.0 \; \mathsf{FPL}_{\mathsf{Maid}} \leq \tilde{y}_{j} < 2.5 \; \mathsf{FPL}_{\mathsf{Maid}} \\ \max(0, \operatorname{prem}_{j}^{|\mathsf{H}|} - 0.08\tilde{y}_{j}) \; \text{if } 2.5 \; \mathsf{FPL}_{\mathsf{Maid}} \leq \tilde{y}_{j} < 3.0 \; \mathsf{FPL}_{\mathsf{Maid}} \\ \max(0, \operatorname{prem}_{j}^{|\mathsf{H}|} - 0.095\tilde{y}_{j}) \; \text{if } 3.0 \; \mathsf{FPL}_{\mathsf{Maid}} \leq \tilde{y}_{j} < 4.0 \; \mathsf{FPL}_{\mathsf{Maid}} \end{cases}$$

Penalties:

$$penalty_j = 1_{[ins_{j+1}=0]} \times 0.025 \times \tilde{y}_j,$$

Implementation of ACA (cont.)

- Screening: Restrictions on the price setting and screening procedures of IHI insurance companies
- **Financing**: New payroll taxes for individuals with incomes higher than \$200,000 per year
- New household budget constraint with the ACA:

$$\left(1+\tau^{C}\right)c_{j}+\left(1+g\right)a_{j+1}+o^{W}\left(m_{j}\right)$$

$$+ \mathbf{1}_{\{\textit{in}_{j+1}=1\}} \mathsf{prem}^{\mathsf{IHI}} + \mathbf{1}_{\{\textit{in}_{j+1}=2\}} \mathsf{prem}^{\mathsf{GHI}}$$

$$= y_j + t_j^{\mathsf{SI}} - tax_j - \mathbb{1}_{\{in_{j+1}=0\}} penalty_j + \mathbb{1}_{\{in_{j+1}=1\}} subsidy_j - tax_j^{\mathsf{ACA}}$$

Aging and the ACA

	2010	ACA -2020	2030	2040	2050	2060
GDP:	100.00	104.15	100.44	100.10	102.69	104.08
Health capital: <i>H</i>	100.00	110.22	111.63	110.99	112.68	114.57
Consumption: C	100.00	101.44	94.62	92.69	94.79	95.35
Med. quantity: M	100.00	120.37	133.37	139.90	142.86	145.79
Med. spend.: $p_m M$	100.00	113.20	123.63	129.09	131.92	134.52
M. sp.: no Ins	100.00	17.10	18.45	18.41	18.56	18.88
M. sp.: IHI	100.00	209.54	191.74	189.41	195.26	195.35
M. sp.: GHI	100.00	106.48	99.65	98.75	101.46	101.87
M. sp.: Maid	100.00	202.12	196.87	196.91	201.43	204.96
M. sp.: Old	100.00	132.49	166.86	181.62	185.00	190.51

Aging and the ACA - 2

	2010	ACA -2020	2030	2040	2050	2060
IHI in %:	6.43	21.71	21.14	20.98	21.05	20.94
GHI in %:	61.02	61.70	61.18	61.11	61.13	60.93
Medicaid in %:	9.78	16.10	16.92	17.12	16.99	17.20
Workers Insured %:	77.23	99.52	99.24	99.22	99.17	99.07
Medicare in %:	17.68	21.74	26.21	27.01	26.76	27.42
Cons. tax: τ^c %	5.00	7.68	11.16	12.68	12.60	12.87
Soc. sec. tax: $ au_{SS}$ %	9.38	12.25	15.69	16.35	16.14	16.70
Medicare tax: $ au_{\it Med}$ %	2.90	2.90	2.90	2.90	2.90	2.90
Payroll tax: $ au^V$ %	0.00	1.33	1.38	1.38	1.36	1.36

Net Effect of ACA in different Periods

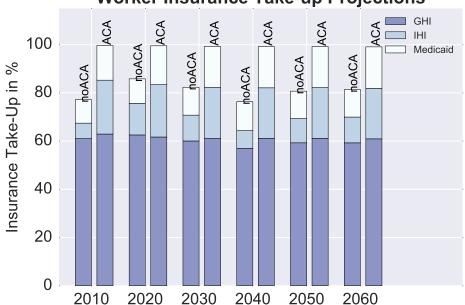
Isolate the net effects of the ACA reform different age profiles

(Table: Aging & ACA in year t) - (Table: Aging-only in t)

Net Effect of ACA: Medicare and Social Security

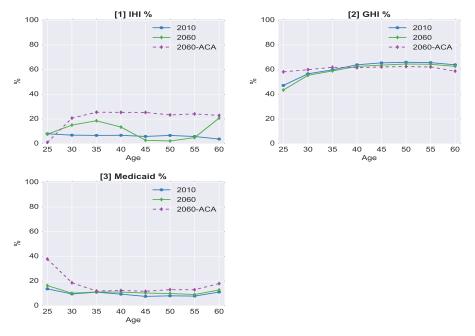
- ACA increases the social security tax
- Medical spending of the old increases slightly due to ACA

Net Effect of ACA: Medicare and Social Security


	%Δ ACA - 2020	2030	2040	2050	2060
%Δ : M. sp.: Old	0.01	0.01	0.04	0.04	0.03
$\%\Delta$: Cons. tax: $ au^{\mathcal{C}}$ %	0.47	0.57	0.58	0.52	0.44
$\%\Delta$: Soc. sec. tax: $ au_{SS}$ %	0.07	0.08	0.11	0.10	0.11
$\%\Delta$: Medicare tax: $ au_{\it Med}$ %	0.0	0.0	0.0	0.0	0.0
$\%\Delta$: Payroll tax: $ au^V$ %	1.33	1.38	1.38	1.36	1.36

Net Effect of ACA: Effect on Workers

- Net impact of the ACA reform is a 18 percent rise in worker insurance take-up
- Driven almost entirely by increase in Medicaid and IHI participation
- GHI is relatively stable around 60 percent
- ACA 'prevents' the drop in GHI in 2040 (without ACA)


Net Effect of ACA: Effect on Workers

	%Δ ACA - 2020	2030	2040	2050	2060
$\%\Delta$: IHI in %:	8.65	10.42	13.60	11.02	10.24
$\%\Delta$: GHI in %:	-0.85	1.13	4.16	1.84	1.66
$\%\Delta$: Medicaid in %:	5.91	5.36	5.11	5.60	5.78
$\%\Delta$: Workers Insured %:	13.71	16.91	22.86	18.46	17.68

Worker Insurance Take-up Projections

Insurance Take-Up: Aging + ACA

Net Effect of ACA in different Periods

Level variables are normalized:

 $\frac{(\text{Table: Aging & ACA in year } t) - (\text{Table: Aging-only in } t)}{(\text{Table: Aging-only in year } t)} \times 100$

Net Effect of ACA: Health Expenditures

- Aggregate health spending drops by a small percentage
- Uninsured individuals into insurance markets where prices paid for medical services are lower
- Substantial increase in spending from both Medicaid and IHI participants
- \blacksquare Increase in IHI \rightarrow shifts in spending types within IHI
 - \blacksquare Subsidies \rightarrow cause high risk types to enter into IHI
 - IHI premiums increase about 20 percent
- Total number of uninsured workers is much lower under the ACA
- As the population ages, the ability of the ACA to insure additional workers diminishes
 - \blacksquare With older age structure more individuals are covered by Medicare \rightarrow limits the net effect of ACA

Net Effect of ACA: Health Expenditures

2020	2030	2040	2050	2060
1.77	1.34	1.18	1.21	1.15
-1.20	-1.66	-2.43	-1.81	-1.78
-75.53	-77.20	-81.63	-78.33	-77.78
23.22	46.19	92.99	48.53	44.97
0.07	1.51	3.45	1.62	1.30
82.46	66.48	61.96	68.97	69.49
0.01	0.01	0.04	0.04	0.03
0.01	-0.06	-0.23	-0.11	-0.11
	1.77 -1.20 -75.53 23.22 0.07 82.46 0.01	1.77 1.34 -1.20 -1.66 -75.53 -77.20 23.22 46.19 0.07 1.51 82.46 66.48 0.01 0.01	1.77 1.34 1.18 -1.20 -1.66 -2.43 -75.53 -77.20 -81.63 23.22 46.19 92.99 0.07 1.51 3.45 82.46 66.48 61.96 0.01 0.01 0.04	1.77 1.34 1.18 1.21 -1.20 -1.66 -2.43 -1.81 -75.53 -77.20 -81.63 -78.33 23.22 46.19 92.99 48.53 0.07 1.51 3.45 1.62 82.46 66.48 61.96 68.97 0.01 0.04 0.04

Net Effect of ACA: Aggregate Variables

ACA causes GDP \downarrow

- Higher taxes: τ_C, τ_V
- Sector re-allocations:
 - \blacksquare Capital in non-medical sector $\downarrow 1$ percent
 - Capital in the medical sector \uparrow 2 percent
- Also $\tau_C \uparrow$ so that $M \uparrow$ and $C \downarrow \rightarrow$ distortion
- Overall health $H \uparrow$

Net Effect of ACA: Aggregate Variables

	2020	2030	2040	2050	2060
GDP:	-1.29	-1.27	-1.09	-1.12	-1.14
Health capital: <i>H</i> Consumption: <i>C</i>		• • • •	0.12 -2.61	•	• • • • •
Med. quantity: M			1.18	-	1.15

Conclusion

- Construct a heterogeneous agents macro-model with health as a durable good
- 2 Account for lifecycle patterns of health expenditures and private insurance take up rates
- 3 Quantify the macroeconomic and distributional effects of aging and the ACA

Extensions

1 Relax some assumptions

- \blacksquare Endogenize survival probability \rightarrow affects assets accumulation
- 2 Additional experiments
 - Push Medicare eligibility to 66, 67, etc.
 - Increase/decrease public insurance eligibility in current US system

References

- Aiyagari, Rao S. 1994. "Uninsured Idiosyncratic Risk and Aggregate Saving." *The Quarterly Journal of Economics* 109(3):659–684.
- Auerbach, Alan J. and William G. Gale. 2013. "Fiscal Myopia." *Working Paper*.
- Auerbach, J. Alan and Laurence J. Kotlikoff. 1987. *Dynamic Fiscal Policy*. Cambridge: Cambridge University Press.
- Bewley, Truman. 1986. Stationary Monetary Equilibrium with a Continuum of Independently Fluctuating Consumers. In *in: Werner Hildenbrand, Andreu Mas-Colell (Eds.), Contributions to Mathematical Economics in Honor of Gerard Debreu.* North-Holland.
- Bloom, David E, David Canning and Günther Fink. 2010. "Implications of population ageing for economic growth." Oxford Review of Economic Policy 26(4):583–612.

- Boards of Trustees. 2015. "2015 Annual Report of the Boards of Trustees of the Federal Hospital Insurance and Federal Supplementary Medical Insurance Trust Funds." *The Boards of Trustees, Federal Hospital Insurance and Federal Supplementary Medical Insurance Trust Funds*.
- Braun, A. and D. Joines. 2015. "The Implications of a Graying Japan for Government Policy." *Journal of Economic Dynamics & Control* 57:1–23.
- Brown, Paul. 2006. *Paying the Price: The High Cost of Prescription Drugs for Uninsured Californians*. CALPIRG Education Fund.
- Capatina, Elena. 2015. "Life-Cycle Effects of Health Risk." *Journal of Monetary Economics* 74:67–88.
- CBO. 2014. "The Budget and Economic Outlook: 2014-2024." Congressional Budget Office.
- De la Croix, David. 2013. *Fertility, Education, Growth and Sustainability*. Cambridge University Press.

- De Nardi, Mariacristina, Selahattin Imrohoroğlu and Thomas J Sargent. 1999. "Projected US Demographics and Social Security." *Review of Economic Dynamics* 2(3):575–615.
- Faruqee, Hamid. 2002. Population aging and its macroeconomic implications: A framework for analysis. Vol. 2 International Monetary Fund.
- Fonseca, Raquel, Pierre-Carl Michaud, Titus Galama and Arie Kapteyn.2013. "On the Rise of Health Spending and Longevity." IZA DP No. 7622.
- Hall, Robert E. and Charles I. Jones. 2007. "The Value of Life and the Rise in Health Spending." *Quarterly Journal of Economics* 122(1):39–72.
- Hubbard, Glenn R., Jonathan Skinner and Stephen P. Zeldes. 1995."Precautionary Saving and Social Insurance." *The Journal of Political Economy* 103(2):369–399.
- Huggett, Mark. 1993. "TheRisk-Free Rate in Heterogeneous-Agent Incomplete-Insurance Economies." *The Journal of Economic Dynamics and Control* 17(5-6):953–969.

- Janicki, Hubert. 2014. "The Role of Asset Testing in Public Health Insurance Reform." *Journal of Economic Dynamics and Control* 44:169–195.
- Jeske, Karsten and Sagiri Kitao. 2009. "U.S. Tax Policy and Health Insurance Demand: Can a Regressive Policy Improve Welfare?" *Journal of Monetary Economics* 56(2):210–221.
- Jung, Juergen and Chung Tran. 2016. "Market Inefficiency, Insurance Mandate and Welfare: U.S. Health Care Reform 2010." *Review of Economic Dynamics* 20:132–159.
- Kitao, S. 2015. "Fiscal Cost of Demographic Transition in Japan." *Journal* of *Economic Dynamics and Control* 54:37–58.
- Kopecky, Karen A and Tatyana Koreshkova. 2014. "The Impact of Medical and Nursing Home Expenses on Savings." *American Economic Journal: Macroeconomics* 6(3):29–72.
- Kotlikoff, Laurence J. 1988. Health Expenditures and Precautionary Savings. In *What Determines Saving?* Cambridge MIT Press chapter 6.

- Kotlikoff, Laurence J, Kent Smetters and Jan Walliser. 2007. "Mitigating America's demographic dilemma by pre-funding social security." *Journal of Monetary Economics* 54(2):247–266.
- Levin, Laurence. 1995. "Demand for Health Insurance and Precautionary Motive for Savings Among TheElderly." *Journal of Public Economics* 57:337–367.
- Nishiyama, Shinichi. 2015. "Fiscal Policy Effects in a Heterogeneous-Agent OLG Economy with an Aging Population." *Journal of Economic Dynamics and Control* 61(C):114–132.
- Palumbo, Michael G. 1999. "Uncertain Medical Expenses and Precautionary Saving Near the End of the Life Cycle." *Review of Economic Studies* 66(2):395–421.
- Pashchenko, Svetlana and Ponpoje Porapakkarm. 2013. "Quantitative Analysis of Health Insurance Reform: Separating Regulation from Redistribution." *Review of Economic Dynamics* 16 (3):383–404.

- Phelps, Charles E. 2003. *Health Economics*. Upper Saddle River, New Jersey: Pearson Education Inc.
- Suen, Richard M. H. 2006. "Technological Advance and the Growth in Health Care Spending." Economie D'Avant Garde, Research Report No. 13. University of Rochester.
- Wise, David A. 2005. "Facing the Age Wave and Economic Policy: Fixing Public Pension Systems WithHealthcarein the Wings." *Fiscal Studies* 26:5–34.
- Zhao, Kai. 2014. "Social Security and the Rise in Health Spending." *Journal* of Monetary Economics 64:21–37.

Supplementary Material

Worker's Dynamic Optimization Problem

$$V(x_{j}) = \max_{\{c_{j}, l_{j}, m_{j}, a_{j+1}, in_{j+1}\}} \left\{ u(c_{j}, h_{j}, l_{j}) + \beta \pi_{j} E\left[V(x_{j+1}) \mid \varepsilon_{j}^{l}, \varepsilon_{j}^{h}, \varepsilon_{j}^{GHI}\right] \right\}$$

s.t. (1)

$$\begin{pmatrix} (1 + \tau^{C}) c_{j} + (1 + g) a_{j+1} + o(m_{j}) + 1_{\{in_{j+1}=1\}} \operatorname{prem}^{\mathsf{IHI}}(j, h) + 1_{\{in_{j+1}=1\}} \\ = y_{j}^{W} - tax_{j} + t_{j}^{\mathsf{SI}}, \\ 0 \leq a_{j+1}, \ 0 \leq l_{j} \leq 1,$$

$$h_j = i\left(m_j, h_{j-1}, \delta^h, \epsilon_j^h\right)$$

Worker's Dynamic Optimization Problem

$$\begin{array}{lll} y_{j}^{W} &=& e\left(\vartheta,h_{j},\varepsilon_{j}^{\prime}\right) \times l_{j} \times w + R\left(a_{j}+t^{\mathsf{Beq}}\right) + \mathsf{profits}, \\ tax_{j} &=& \tilde{\tau}\left(\tilde{y}_{j}^{W}\right) + tax_{j}^{SS} + tax_{j}^{\mathsf{Mcare}}, \\ \tilde{y}_{j}^{W} &=& y_{j}^{W} - a_{j} - t^{\mathsf{Beq}} - \mathbf{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}} - 0.5\left(tax_{j}^{SS} + tax_{j}^{\mathsf{Med}}\right), \\ tax_{j}^{SS} &=& \tau^{\mathsf{Soc}} \times \min\left(\bar{y}_{ss}, \ e\left(\vartheta,h_{j},\varepsilon_{j}^{\prime}\right) \times l_{j} \times w - \mathbf{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}}\right), \\ tax_{j}^{\mathsf{Mcare}} &=& \tau^{\mathsf{Mcare}} \times \left(e\left(\vartheta,h_{j},\varepsilon_{j}^{\prime}\right) \times l_{j} \times w - \mathbf{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}}\right), \\ t_{j}^{\mathsf{SI}} &=& \max\left[0, \ \underline{c} + o\left(m_{j}\right) + tax_{j} - y_{j}^{W}\right]. \end{array}$$

Retiree's Dynamic Optimization Problem

$$V(x_j) = \max_{\{c_j, m_j, a_{j+1}\}} \left\{ u(c_j, h_j) + \beta \pi_j E\left[V(x_{j+1}) \mid \varepsilon_j^h\right] \right\}$$
(2)
s.t.

$$(1 + \tau^{\mathsf{C}}) c_j + (1 + g) a_{j+1} + \gamma^{\mathsf{Mcare}} \times p_m^{\mathsf{Mcare}} \times m_j + \mathsf{prem}^{\mathsf{Mcare}} = R (a_j + t_j^{\mathsf{Beq}}) - tax_j + t_j^{\mathsf{Soc}} + t_j^{\mathsf{SI}}, a_{j+1} \ge 0,$$

where

$$\begin{array}{lll} tax_{j} & = & \tilde{\tau}\left(\tilde{y}_{j}^{R}\right), \\ \tilde{y}_{j}^{R} & = & t_{j}^{\text{Soc}} + r \times \left(a_{j} + t_{j}^{\text{Beq}}\right) + \text{profits}, \\ t_{j}^{\text{SI}} & = & \max\left[0, \underline{c} + \gamma^{\text{Mcare}} \times p_{m}^{\text{Mcare}} \times m_{j} + tax_{j} - R\left(a_{j} + t_{j}^{\text{Beq}}\right) - t_{j}^{\text{Soc}}\right] \end{array}$$

Insurance Sector

$$(1 + \omega_{j,h}^{\text{IHI}}) \sum_{j=2}^{J_1} \mu_j \int \left[\mathbf{1}_{[in_j(x_j)=1]} (1 - \rho^{\text{IHI}}) \rho_m^{\text{IHI}} m_{j,h}(x_{j,h}) \right] d\Lambda(x_{j,h})$$

$$= R \sum_{j=1}^{J_1-1} \mu_j \int \left(\mathbf{1}_{[in_{j,h}(x_{j,h})=1]} \text{prem}^{\text{IHI}}(j,h) \right) d\Lambda(x_{j,h})$$

$$(1 + \omega^{\text{GHI}}) \sum_{j=2}^{J_1} \mu_j \int \left[\mathbf{1}_{[in_j(x_j)=2]} (1 - \rho^{\text{GHI}}) \rho_m^{\text{GHI}} m_j(x_j) \right] d\Lambda(x_j)$$

$$= R \sum_{j=1}^{J_1-1} \mu_j \int \left(\mathbf{1}_{[in_j(x_j)=2]} \text{prem}^{\text{GHI}} \right) d\Lambda(x_j),$$

Back to Remaining Parts

Government Budget

$$G + T^{\mathsf{SI}} + T^{\mathsf{Med}} = \sum_{j=1}^{J} \mu_j \int \left[\tau^{\mathsf{C}} c(x_j) + tax_j(x_j) \right] d\Lambda(x_j),$$

where

$$T^{\mathsf{SI}} = \sum_{j=1}^{J} \mu_j \int t_j^{\mathsf{SI}}(x_j) \, d\Lambda(x_j)$$

$$T^{\mathsf{Med}} = \sum_{j=1}^{J} \mu_j \int \left(1 - \rho^{\mathsf{Med}}\right) p_m^{\mathsf{Med}} m_j\left(x_j\right) d\Lambda\left(x_j\right) - \sum_{j=1}^{J} \mu_j \int \mathsf{prem}^{\mathsf{Med}}\left(x_j\right) d\Lambda\left(x_j\right)$$

Pensions and Bequests

Pensions:

$$\sum_{j=J_1+1}^{J} \mu_j \int t_j^{\mathsf{Soc}}(x_j) \, d\Lambda(x_j)$$
$$= \sum_{j=1}^{J_1} \mu_j \int \tau^{\mathsf{Soc}} \times (e_j(x_j) \times l_j(x_j) \times w) \, d\Lambda(x_j)$$

Accidental Bequests:

$$\sum_{j=1}^{J_{1}} \mu_{j} \int t_{j}^{\mathsf{Beq}}\left(x_{j}\right) d\Lambda\left(x_{j}\right) = \sum_{j=1}^{J} \int \tilde{\mu}_{j} a_{j}\left(x_{j}\right) d\Lambda\left(x_{j}\right)$$

Back to Remaining Parts

Competitive Equilibrium Definition

• Given
$$\left\{\Pi_{j}^{I}, \Pi_{j}^{h}, \Pi_{j,\vartheta}^{\text{GHI}}\right\}_{j=1}^{J}, \left\{\pi_{j}\right\}_{j=1}^{J}$$
 and
• $\left\{tax\left(x_{j}\right), \tau^{C}, \text{prem}^{R}, \tau^{SS}, \tau^{\text{Med}}\right\}_{j=1}^{J},$

a competitive equilibrium is a collection of sequences of:

- distributions $\{\mu_j, \Lambda_j(x_j)\}_{j=1}^J$
- individual household decisions $\{c_j(x_j), l_j(x_j), a_{j+1}(x_j), m_j(x_j), in_{j+1}(x_j)\}_{j=1}^J$
- aggregate stocks of capital and labor $\{K, L, K_m, L_m\}$
- factor prices $\{w, q, R, p_m\}$

$$\blacksquare$$
 markups $\left\{ \omega^{\rm IHI}, \omega^{\rm GHI}, \nu^{\it in} \right\}$ and

• insurance premiums $\left\{ \text{prem}^{\text{GHI}}, \text{prem}^{\text{IHI}}(j,h) \right\}_{i=1}^{J}$

such that:

Competitive Equilibrium Definition (cont.)

(a) $\{c_j(x_j), l_l(x_j), a_{j+1}(x_j), m_j(x_j), in_{j+1}(x_j)\}_{j=1}^J$ solves the consumer problem

(b) the firm first order conditions hold:

$$w = F_L(K, L) = p_m F_{m,L}(K_m, L_m)$$
$$q = F_K(K, L) = p_m F_{m,K}(K_m, L_m)$$
$$R = q + 1 - \delta$$

(c) markets clear

Competitive Equilibrium Definition (cont.)

$$\begin{split} \mathcal{K} + \mathcal{K}_{m} &= \sum_{j=1}^{J} \mu_{j} \int \left(a\left(x_{j}\right) \right) d\Lambda\left(x_{j}\right) + \sum_{j=1j}^{J} \int \tilde{\mu}_{j} a_{j}\left(x_{j}\right) d\Lambda\left(x_{j}\right) \\ &+ \sum_{j=1}^{J_{1}-1} \mu_{j} \int \left(\mathbf{1}_{\left[in_{j+1}=2\right]}\left(x_{j}\right) \times \operatorname{prem}^{\mathsf{IHI}}\left(j,h\right) \right) d\Lambda\left(x_{j}\right) \\ &+ \sum_{j=1}^{J_{1}-1} \mu_{j} \int \left(\mathbf{1}_{\left[in_{j+1}=3\right]}\left(x_{j}\right) \times \operatorname{prem}^{\mathsf{GHI}} \right) d\Lambda\left(x_{j}\right) \end{split}$$

$$T^{\text{Beq}} = \sum_{j=1j}^{J} \int \tilde{\mu}_j a_j(x_j) d\Lambda(x_j)$$
$$L + L_m = \sum_{j=1}^{J_1} \mu_j \int e_j(x_j) l_j(x_j) d\Lambda(x_j)$$

Competitive Equilibrium Definition (cont.)

(d) the aggregate resource constraint holds

$$G + (1 + g) S + \sum_{j=1}^{J} \mu_{j} \int \left(c\left(x_{j}\right) + p_{m}^{in_{j}\left(x_{j}\right)} m\left(x_{j}\right) \right) d\Lambda\left(x_{j}\right) + \operatorname{Profit}^{M} = Y + (1 - \delta) K$$

- (e) the government programs clear
- (f) the budget conditions of the insurance companies hold, and
- (g) the distribution is stationary

$$(\mu_{j+1}, \Lambda(x_{j+1})) = T_{\mu,\Lambda}(\mu_j, \Lambda(x_j)),$$

where $T_{\mu,\Lambda}$ is a one period transition operator

Back to Competitive Equilibrium

1

Human Capital Formation

Human capital:

$$e = e_j\left(\vartheta, h_j, \epsilon'\right) = \epsilon' \times \left(\overline{wage}_{j,\vartheta}\right)^{\chi} \times \left(\exp\left(\frac{h_j - \overline{h}_{j,\vartheta}}{\overline{h}_{j,\vartheta}}\right)\right)^{1-\chi}$$

- $\overline{wage}_{i,\vartheta}$ from MEPS
- ϵ^{l} and Π^{l} from prior studies using Tauchen (1986) procedure

Back to Health Shock

Calibration: Group Insurance Offers

• Offer shock:
$$\epsilon^{GHI} = \{0, 1\}$$
 where

- 0 indicates no offer and
- 1 indicates a group insurance offer
- MEPS variables OFFER31X, OFFER42X, and OFFER53X
- Probability of a GHI offer is highly correlated with income
- $\Pi_{j,\vartheta}^{h}$ with elements $\Pr\left(\epsilon_{j+1}^{\text{GHI}}|\epsilon_{j}^{\text{GHI}},\vartheta\right)$
- $\blacksquare \ \vartheta$ indicates permanent income group

Calibration: Coinsurance Rates

- Coinsurance rates from MEPS
- Premiums clear insurance constraints
- Markup profits of GHI are zero
- Markup profits of IHI are calibrated to match IHI take up rate
- IHI profits used to cross-subsidize GHI

Calibration: Pension Payments

- *L* is average/aggregate effective human capital and
- $w \times L$ average wage income
- Pension payments: $t^{\text{Soc}}(\vartheta) = \Psi(\vartheta) \times w \times L$
- where $\Psi(\vartheta)$ is replacement rate that determines the size of pension payments
- Total pension amount to 4.1 percent of GDP

Calibration: Public Health Insurance

- Premium for medicare at 2.11% of GDP (Jeske and Kitao (2009))
- Coinsurance rates for Medicare and Medicaid from MEPS
- Calibrated: Medicaid eligibility FPL_{Maid} at 60% of FPL to match % on Medicaid
- Calibrated: Asset test for Medicaid to match Medicaid take-up profile

Calibration: Taxes

Gouveia and Strauss (1994) for federal progressive income tax

$$ilde{ au}\left(ilde{y}
ight)=a_{0}\left[ilde{y}-\left(ilde{y}^{-a_{1}}+a_{2}
ight)^{-1/a_{1}}
ight]$$

- Medicare tax is 2.9%
- Social security tax is 9%
- Consumption tax is 5%

External Parameters

Parameters:		Explanation/Source:
- Periods working	<i>J</i> ₁ = 9	
- Periods retired	$J_2 = 6$	
- Population growth rate	n = 1.2%	CMS 2010
- Years modeled	years $= 75$	from age 20 to 95
- Total factor productivity	A = 1	Normalization
- Capital share in production	$\alpha = 0.33$	KydlandPescott1982
- Capital in medical services production	$\alpha_m = 0.26$	Donahoe (2000)
- Capital depreciation	$\delta = 10\%$	KydlandPescott1982
- Health depreciation	$\delta_{h,j} = [0.6\% - 2.13\%]$	MEPS 1999/2009
- Survival probabilities	π_j	CMS 2010
- Health Shocks	see appendix	MEPS 1999/2009
- Health transition prob.	see appendix	MEPS 1999/2009
- Productivity shocks	see appendix	MEPS 1999/2009
- Productivity transition prob.	see appendix	MEPS 1999/2009
- Group insurance transition prob.	see appendix	MEPS 1999/2009

Calibrated Parameters

Parameters:		Explanation/Source:
- Relative risk aversion	$\sigma = 3.0$	to match $\frac{K}{Y}$ and R
- Prefs c vs. I	$\eta=$ 0.43	to match labor supply and $\frac{p \times M}{Y}$
- Disutility of health spending	$\eta_m = 1.5$	to match health capital profile
- Prefs c, l vs. health	$\kappa = 0.89$	to match labor supply and $rac{p imes M}{Y}$
- Discount factor	$\beta = 1.0$	to match $\frac{K}{Y}$ and R
- Health production productivity	$\phi_j \in [0.7-0.99]$	to match spending profile
- TFP in medical production	$A_{m} = 0.4$	to match $\frac{p \times M}{Y}$
- Production parameter of health	$\xi=0.175$	to match $\frac{p \times M}{Y}$
- effective labor production	$\chi = 0.26$	to match labor supply
- Health productivity	heta=1	used for sensitivity analysis
- Pension replacement rate	$\Psi = 40\%$	to match $ au^{soc}$
- Residual Gov't spending	$\Delta_C = 12.0\%$	to match size of tax revenue
- Minimum health state	$h_{\min} = 0.01$	to match health spending
Internal neremators		

- Internal parameters

Back to Calibration