Health Heterogeneity, Portfolio Choice and Wealth Inequality

Juergen Jung Towson University Chung Tran Australian National University

Midwest Macro Meetings - Kansas FED

May 2025

Disclaimer

This project was supported by a grant from the School of Emerging Technologies (SET) at Towson University and the Australian Research Council (ARC, Grant No.: DP210102784).

The content is solely the responsibility of the authors and does not represent the official views of the funding institutions.

Introduction

- Health \iff earnings/income/wealth inequality
- Hosseini, Kopecky and Zhao (2021); Capatina and Keane (2023); De Nardi, Pashchenko and Porapakkarm (2024); Mahler and Yum (2024)
- Two health channels address how much households (HHs) save:

1. Health-longevity channel health \Rightarrow survival rates \Rightarrow HH choices \Rightarrow savings \Rightarrow wealth accum.

2. Health-income/expenditure channel

 $\left.\begin{array}{l} \mathsf{health} \Rightarrow \mathsf{labor} \ \mathsf{productivity} \Rightarrow \mathsf{labor} \ \mathsf{supply} \Rightarrow \mathsf{income} \\ \mathsf{health} \Rightarrow \mathsf{health} \ \mathsf{expenditure} \Rightarrow \mathsf{net} \ \mathsf{of} \ \mathsf{OOP} \ \mathsf{income} \end{array}\right\} \Rightarrow \mathsf{savings/wealth} \ \mathsf{accum}.$

This paper

- Add health channel to address how (where) households save
 - Household finance: wealth/investment portfolio choice
 - Lit. Surveys: Gomes (2020) and Gomes, Haliassos and Ramadorai (2021)
- Health-wealth portfolio channel
 - If portfolio composition (ratio of risky assets) differs by health \Rightarrow returns to investment differ by health
 - If health effect is persistent \Rightarrow compounding of investment returns \uparrow wealth gap over lifecycle (between health types)
 - Health heterogeneity \Rightarrow dynamics of how (and how much) households save
 - Health-wealth channel \Rightarrow important implications for wealth inequality
 - Introduces new wealth redistribution role for health insurance

This paper

- Highlight/quantify importance of health-wealth portfolio channel
- Empirical analysis: US household survey data (PSID and HRS)
 - Document lasting effect of poor health at 45–55 on risky asset-share at 60–70
- Structural analysis: model + counterfact. experiments
 - Stochastic lifecycle model: **portfolio choice** (2 assets), **health**, and health insurance
 - Decompose effects of health and portfolio choice on wealth gap
 - Examine role of HI on wealth gap in presence of health-wealth-channel

Findings

Empirical: **PSID+HRS data**

- RA share of 60–70 olds is negatively correlated with sick-at-45–55
- Health effect primarily via extensive (participation) margin in **RA** investments
- Significant differences of lifecycle patterns of **RA** participation by **health-when-young**

Structural: Lifecycle model

- Average annual lifetime cost of sick-at-45–55: \$3,278
- Health-wealth portfolio channel is large
 - Wealth gap (P90/P50) overall \downarrow up to 56%
- Expansion of either public or private health insurance
 - Stock market participation: \uparrow 4–5%
 - Wealth gap: \downarrow 14–24%

Mechanism of health-wealth portfolio channel

- 1. Bad health when "young"
 - \Rightarrow lower surv. prob.+income losses+high medical expenditure
 - \Rightarrow higher expected future risk (as health shocks are persistent) \downarrow stock market participation
- 2. Health heterogeneity \Rightarrow heterogeneity in wealth portfolio \Rightarrow heterogeneous investment returns
- 3. Compounding of investment returns \Rightarrow larger wealth gap over time
- 4. Expansion of health insurance $\Rightarrow \uparrow$ stock market participation $\Rightarrow \downarrow$ wealth gap

Related literature

Macro-health economics

- Hosseini, Kopecky and Zhao (2021); Capatina and Keane (2023); Mahler and Yum (2024); Chen, Feng and Gu (2025)
- Jeske and Kitao (2009); De Nardi, French and Jones (2010); Capatina (2015); Jung and Tran (2016); Jung and Tran (2023) etc.
- Household finance \Rightarrow lifecycle portfolio choice models
 - Seminal works: Samuelson (1969); Merton (1971)
 - Surveys: Gomes (2020) and Gomes, Haliassos and Ramadorai (2021)
 - Recent related: Campanale, Fugazza and Gomes (2015); Fagereng, Gottlieb and Guiso (2017); Gomes and Smirnova (2021); Tischbirek (2019)
- Wealth inequality/dynamics literature: Benhabib, Bisin and Zhu (2015); Gabaix et al. (2016); Benhabib, Bisin and Luo (2019)
- Health+Investment Portfolio
 - Yogo (2016) focus on retirees and housing, model starts at 65
 - Lusardi, Michaud and Mitchell (2017) knowledge accum. for "sophisticated" assets, health only affects old
 - Hugonnier and Pelgrin (2013) endog. health, closed form but no lifecycle consideration

This paper: health at "45–55" \Rightarrow generating wealth gap via two assets at 65 & role of health insurance

Detailed references

Health-wealth portfolio channel: Empirical evidence

Data

- Data sources: **PSID** 1984–2019 and **HRS** 1992–2018
- Financial wealth
 - Focus on financial wealth (no housing, cars, real estate)
 - Collapse 20 asset categories into 2
 - safe assets: checking/savings accts, money market funds, CDs, bonds (government savings bonds, T-bills, corporate, municipal and foreign bonds, bond funds)
 - 2. risky assets: stocks and mutual funds
 - IRAs & 401(k) limited info \Rightarrow assign 45.8% & 41% of holdings to risky assets (Tischbirek, 2019; Agnew, Balduzzi and Sundén, 2003)
 - PSID does not have info about 401(k)
- Health status
 - Five states: 1 excellent, 2 very good, 3 good, 4 fair, 5 poor
 - Two groups by health status at age 45–55:
 - Sick: 4-fair and 5-poor
 - Healthy: 1-excellent, 2-very good, 3-good health

More details

Econometric model

• Reduced form: Poor health (Sick 45–55) \Rightarrow risky asset share

$$y_{it} = \beta + \gamma \times 1_{\{\text{Sick 45} - 55, i\}} + \delta \times Z_{it} + \varepsilon_{it}$$

- y_{it} risky asset share (in financial portfolio) at 60–70
- $1_{\{Sick 45-55, i\}}$ indicator "bad health in at least one survey wave between 45–55"
- *Z_{it}* controls
- ε_{it} error term

PSID: Stock share at 60–70

	(1)	(2)	(3)	(4)	(5)
Sick at 45_55	-0.028***	-0.040***	-0.035***	0.008	0.004
	(0.008)	(0.010)	(0.010)	(0.017)	(0.015)
Unemployed at 45_55	-0.004	0.005	-0.004	0.035**	0.035***
	(0.007)	(0.009)	(0.010)	(0.015)	(0.013)
Uninsured at 45_55	-0.030***	-0.047***	-0.031***	-0.018	0.000
	(0.009)	(0.010)	(0.009)	(0.028)	(0.026)
Observations R^2	5625 0.323	5625 0.302	5625	2335	2335 0.107
Conditional P(Y>0)	No	No	No	Yes	Yes
Random Effects	No	No	Yes	Yes	No
Weighted	No	Yes	No	No	Yes

Selection model: PSID

	Stock Share	P(Stocks)	Safe A. Share	P(Safe A.)
Sick at 45_55	0.003	-0.271***	0.036***	-0.198***
	(0.015)	(0.051)	(0.009)	(0.058)
Unemployed at 45_55	0.034***	-0.175***	0.003	-0.232***
	(0.012)	(0.047)	(0.008)	(0.053)
Uninsured at 45_55	-0.027	-0.382***	0.044***	-0.170***
	(0.026)	(0.076)	(0.012)	(0.064)
Observations	5625		5625	

HRS regression results

Stochastic lifecycle model

Lifecycle model: portfolio choice, health & HI

- A stochastic lifecycle model of portfolio choice
 - Lifespan: Age 40–94
 - Three skill levels: No high school, high school and college
 - Two assets: Risky (stock) and safe (bond) assets
- Idiosyncratic shocks
 - $1. \ {\sf Health}$
 - Longevity
 - Health expenditure
 - Labor productivity
 - 2. Health insurance/employer type
 - 3. Labor
- Health insurance (HI)
 - Public HI: Medicaid & Medicare (w/ eligibility criteria)
 - Private HI: Employer sponsored HI (w/ community rating and tax deduct. premium)
- Government
 - Progressive inc. tax, payroll taxes, capital taxes (dividend, cap. gains & interest)
 - Soc. Security, Medicaid, Medicare, min. consumption program

Model details

Worker problem

• State vec:
$$x_j = \left\{ \vartheta, a_j, \epsilon_j^{incP}, \epsilon_j^h, \epsilon_j^{ehi} \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4\} \times \{1, 2, 3, 4, 5\} \times \{0, 1\}$$

 $\mathbb{E}_{\epsilon_{j+1}^{\mathit{incP}},\epsilon_{j+1}^{\mathit{h}},\epsilon_{j+1}^{\mathit{s}},\epsilon_{j+1}^{\mathit{s}}|\epsilon_{j}^{\mathit{incP}},\epsilon_{j}^{\mathit{h}},\epsilon_{j}^{\mathit{s}}}$

$$V(x_{j}) = \max_{\left\{c_{j}, \ell_{j}, \alpha_{j}\right\}} \left\{ u\left(c_{j}, \ell_{j}\right) + \beta \mathbb{E} \left[\underbrace{\overbrace{\sigma_{j}\left(h\left(e_{j}^{h}\right)\right)}^{\text{Health-longevity channel}} V\left(x_{j+1}\right) + \underbrace{\overbrace{\left(1 - \pi_{j}\left(h\left(e_{j}^{h}\right)\right)\right)}^{\text{Health-longevity channel}} u^{\text{beq}}\left(a_{j+1}\right)}_{u^{\text{beq}}\left(a_{j+1}\right)}\right] \right\}$$

s.t.

$$a_{j+1} = \tilde{R}_{j+1} \left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Health-inc. channel} \\ a_j + y_j \left(\ell_j, \vartheta, e_j^{incP}, e_j^h \right) + \text{tr}_j^{\text{si}} - \overbrace{o_j \left(m_j, e_{j,\vartheta}^{\text{ehi}}, y_j^{\text{agi}}, a_j \right)} \\ \hline \\ -1_{\left[e_j^{\text{ehi}} = 1 \right]} \text{prem}_j^{\text{ehi}} \\ -1_{\text{Health-exp. channel}} \begin{array}{c} -1_{\text{Health-exp. channel}} \\ -1_{\left[a_j > 0 \right]} q \end{array} \right) \\ \end{array} \right)$$

$$\tilde{R}_{j+1} = \alpha_j \left(1 + \tilde{r}_{net,j+1}^s \left(\tilde{e}_{j+1}^s \right) \right) + \left(1 - \alpha_j \right) \left(1 + \tilde{r}_{net}^b \right)$$

$$\mathsf{tax}_{j} = \mathsf{tax}^{\mathcal{Y}} \left(y_{j}^{\mathsf{tax}} \right) + \mathsf{tax}^{\mathsf{ss}} \left(y_{j}^{\mathsf{ss}} ; \, \bar{y}^{\mathsf{ss}} \right) + \mathsf{tax}^{\mathsf{mcare}} \left(y_{j}^{\mathsf{ss}} \right)$$

More Details

Retiree problem

• State vector:
$$x_j = \left\{ \vartheta, a_j, \frac{e_j^h}{f} \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4, 5\}$$

• Expectation $\Rightarrow \mathbb{E}_{\epsilon_{j+1}^h, \epsilon_{j+1}^s | \epsilon_j^h}$

$$V(x_{j}) = \max_{\left\{c_{j}, \alpha_{j}\right\}} \left\{ u(c_{j}) + \beta \mathbb{E} \left[\underbrace{\pi_{j}\left(h\left(\epsilon_{j}^{h}\right)\right)}_{\left\{\alpha_{j}\left(h\left(\epsilon_{j}^{h}\right)\right)\right)} V(x_{j+1}) + \underbrace{\left(1 - \pi_{j}\left(h\left(\epsilon_{j}^{h}\right)\right)\right)}_{\left\{\alpha_{j}\right\}} u^{\text{beq}}(a_{j+1}) \right] \right\} \right\}$$

s.t.

$$a_{j+1} = \tilde{R}_{j+1} \begin{pmatrix} a_j + \operatorname{tr}_j^{\operatorname{ss}}\left(\bar{y}^{\vartheta}\right) + \operatorname{tr}_j^{\operatorname{si}} - \overbrace{o_j\left(m_j, \varepsilon_{j,\vartheta}^{\operatorname{ehi}}, y_j^{\operatorname{agi}}, a_j\right)} \\ -\operatorname{prem}^{\operatorname{mcare}} \underbrace{-\operatorname{tax}^{y}\left(y_j^{\operatorname{tax}}\right)}_{\operatorname{Health-exp. channel}} - (1 + \tau^c) c_j - \mathbf{1}_{\left[\alpha_j > 0\right]} q \end{pmatrix}$$

Health-wealth porfolio channel

$$\tilde{R}_{j+1} = \alpha_j \left(1 + \tilde{r}_{net,j+1}^s \left(\epsilon_{j+1}^s \right) \right) + \left(1 - \alpha_j \right) \left(1 + \bar{r}_{net}^b \right)$$

More Details

Mapping the model to data

Parametrization, calibration and estimation

Data sources:

- PSID for asset profiles, initial asset distribution
- MEPS: labor supply, health shocks, health expenditures, coinsurance rates
- Previous studies: labor productivity process, risk aversion parameter σ , the bequest parameter θ_2
- Estimation:
 - Paras: time discount factor β , weight on consumption η , strength of bequest θ_1 and stock market participation costs

$$\Theta = \left\{\beta, \, \eta, \, \theta_1, \, q(\text{age-group}, \, \vartheta, \epsilon^h)\right\}$$

- Method of simulated moments

More calibration/estimation details

Estimation target: RA participation rate

20 / 33

Performance (not targets) Financial asset distribution

Performance: Wealth-to-income ratio

Model performance: Selection model

	Model		PSI	D
	Stock Share	P(Stocks)	Stock Share	P(Stocks)
Sick at 45_55	0.006***	-0.246***	0.003	-0.271***
	(0.001)	(0.003)	(0.015)	(0.051)
Unemployed at 45_55	0.017***	-0.480***	0.034***	-0.175***
	(0.002)	(0.003)	(0.012)	(0.047)
Uninsured at 45_55	-0.001	-0.074***	-0.027	-0.382***
	(0.001)	(0.003)	(0.026)	(0.076)
Observations	945861		5625	

- Heckman-selection model
- Left: Regression w/ model generated data
- Right: Regression w/ PSID data

Quantitative Analysis

Counter factual: Benefits of good health

Counterfactual

- 1. Everybody at age 45–55 draws good health (surprise shock) \Rightarrow Simulates control group to individuals who were sick at 45–55
- 2. Everybody at age 40-death draws good health
- Keep policy functions unchanged
- Calculate lifetime benefit/cost of good/bad health (annual averages) following De Nardi, Pashchenko and Porapakkarm (2024)

$$\overline{\mathsf{benefit}}_{i} = \left(\frac{1}{\sum_{j=1}^{J} 1_{\mathsf{alive}_{j}}}\right) \sum_{j=1}^{J} 1_{\mathsf{alive}_{j}} \times \left(\begin{array}{ccc} \mathsf{net of med expens.} & \mathsf{net of med expens.} \\ \mathsf{always healthy} & \mathsf{benchmark} \\ \overbrace{(y_{ij}^{**} - oop_{ij}^{**})}^{\mathsf{denchmark}} & - & \overbrace{(y_{ij}^{*} - oop_{ij}^{*})}^{\mathsf{denchmark}} \end{array}\right)$$

Counter factual: Benefits of being "Healthy"

	All		By skill leve	I
		Low	Medium	High
 "Healthy" between 45–55 % of time in bad health eliminated Medical cost ↓ + income ↑ Welfare (CEV) 	8.89%	12.56%	8.10%	5.64%
	\$3,278	\$3,815	\$3,070	\$3,032
	-	+9.72%	+8.11%	+5.55%
 "Healthy" between 40-death % of time in bad health eliminated Medical cost ↓ + income ↑ Welfare (CEV) 	16.49%	23.26%	15.24%	10.15%
	\$7,913	\$9,256	\$7,534	\$6,971
	-	+21.45%	+20.01%	+13.68%

• "Healthy" defined as excellent, very good and good

- Skill types:
 - Low (No high school)
 - Medium (High school)
 - High (College)

Decomposition: Health-wealth portfolio channel

	Two assets economy		Single asset economy	
	1. Hith shocks	2. No-h.s.	3. H.s.	4. No-h.s.
Stock participation • Age 65: sick 45–55 • Age 65: healthy 45–55	34% 47%	n/a 55%	n/a n/a	n/a n/a
Assets Labor participation Hours (workers) Consumption	100 51.40% 100 100	122.2 (↑ 22.2%) 68.80% 101.98 104.70 (↑ 4.7%)	62.5 51.89% 98.02 98.62	71.6 († 14.6 %) 68.42% 102.12 102.15 († 3.6 %)
Wealth-to-income (W/I) • W/I at 65: all • W/I at 65: sick 45–55 • W/I at 65: healthy 45–55	4.41 3.12 5.29	5.42 († 22.9 %) n/a 5.42	2.79 2.06 3.29	3.19 († 14.3 %) n/a 3.19

- 1. Bench: Portfolio choice + health shocks (health-wealth channel active)
- 2. Portfolio choice BUT no health shocks (only good health)
- 3. No portfolio choice + health shocks
- 4. No portfolio choice AND no h.s. (health-wealth channel shut off)

Decomposition: Wealth gaps

	Two assets economy		Single asset economy	
	1. H.s.	2. No-h.s.	3. H.s.	4. No-h.s.
Wealth gap All age groups				
• P90/P50	14.47	8.12 (↓ 43.9 %)	8.92 (↓38.4%)	6.37 (↓56.0%) (↓ 28.6 %)
Age 65				
• P90/P50	15.96	7.72 (↓ 51.6 %)	9.34 (↓41.5%)	5.98 (↓62.5%) (↓ 36.0 %)
Age 65		No h.s. at 45–55		No h.s. at 45–55
• P90/P50	15.96	10.23 (↓ 35.9 %)	9.34 (↓41.5%)	6.94 (↓56.5%) (↓ 25.7 %)

Decomposition profiles

Health insurance expansion experiments

Benchmark

- Employer-sponsored health insurance (EHI) for workers
- Medicare for retirees
- Medicaid for poor
- Experiment 1: Medicare for all
 - Expansion of Medicare to all workers and retirees
 - No EHI
- Experiment 2: EHI for all workers
 - Expansion of EHI to all workers
 - Benchmark Medicare and Medicaid

Health insurance expansion

	Two assets economy w/ health shocks			
	Benchmark	Exp1: Medicare for all	Exp2: EHI for all workers	
Assets	100	104.3	103.8	
Stock participation • At 65: sick 45-55 • At 65: healthy 45-55	34% 47%	39% 51%	38% 51%	
Wealth gap • All age: P90/P50 • At 65: P90/P50	14.47 15.96	10.53 (↓ 27.2 %) 11 43 (↓ 28.4 %)	11.23 (↓ 22.4 %) 12 18 (↓ 23.68 %)	
Welfare (CEV)	0	+1.97	+1.93	

Note: Partial equilibrium results. Reforms are not financed!

HI policy experiment profiles

Conclusion

Conclusion

- Study dynamic effects of health shocks on savings, portfolio choice and wealth accumulation over lifecycle
- Empirical analysis using PSID + HRS and panel regression models
- Structural lifecycle model $\mathsf{w}/\mathsf{ savings}$ (portfolio) decisions, health shocks, health insurance
- Long-lasting effects of bad health (when "young") on stock market participation, portfolio choice and wealth gaps
- **Health-wealth portfolio channel** is quantitatively important for wealth disparity
- Important role of health insurance for reducing wealth gap over lifecycle

Thank you!

Supplementary material

Related literature I

- Lifecycle portfolio investment literature starting with Samuelson (1969); Merton (1971) and recent surveys in Gomes (2020) and Gomes, Haliassos and Ramadorai (2021)
- Health and wealth inequality
 - Medical expenditures and access to health insurance: De Nardi, French and Jones (2010); Nakajima and Telyukova (2024); Chen, Feng and Gu (2025); De Nardi, Pashchenko and Porapakkarm (2024)
 - Health on labor supply and productivity: Prados (2018); Capatina and Keane (2023); Hosseini, Kopecky and Zhao (2021)
 - Lifestyle behaviors: Mahler and Yum (2024)
- · Wealth on proportion of risky assets has mixed results
 - positive effect: Wachter and Yogo (2010)
 - minor effect: Brunnermeier and Nagel (2008)
 - negative effect: Liu, Liu and Cai (2021)
- Additional channels
 - stock market entry/adjustment costs: Alan (2006); Bonaparte, Cooper and Zhu (2012); Fagereng, Gottlieb and Guiso (2017)
 - education: Cocco, Gomes and Maenhout (2005); Cooper and Zhu (2016)

Related literature II

- unemployment: Bagliano, Fugazza and Nicodano (2014); Bagliano, Fugazza and Nicodano (2019)
- household composition: Inkmann, Michaelides and Zhang (2022)
- demographics and composition of 401k: Egan, MacKay and Yang (2021)
- introduction of Pension Protection Act of 2006: Parker et al. (2022)
- longevity annuities: Zhou, Li and Zhou (2022)
- reverse mortgages: Nakajima and Telyukova (2017); Hambel, Kraft and Meyer-Wehmann (2022)
- cyclicality of skewness of income shocks: Catherine (2022)
- Estimated structural lifecycle models of portfolio choice and retirement: Yogo (2016); Fagereng, Gottlieb and Guiso (2017); Gomes and Smirnova (2021)
- Calibrated lifecycle models with liquidity costs of stocks and long-term bonds: Campanale, Fugazza and Gomes (2015) and Tischbirek (2019)
- Empirical lit. of **health spending** and **health insurance** on portfolio choice of **elderly:** Goldman and Maestas (2013); Ayyagari and He (2016)
 - Early life health status: Böckerman, Conlin and Svento (2021)
 - Current health status: Rosen and Wu (2004)
 - Subjective health status: Bressan, Pace and Pelizzon (2014)
 - Expected future health shocks: Edwards (2008)
Related literature III

Empirical financial literacy

- Cognitive abilities and investment decisions: Christelis, Jappelli and Padula (2010); Agarwal and Mazumder (2013); Gamble et al. (2015); Lindeboom and Melnychuk (2015); Mazzonna and Peracchi (2020); Shimizutani and Yamada (2020)
- Role of financial advising: Rossi and Utkus (2020, 2021)

Back to literature

Financial assets over lifecycle: PSID

Financial assets over lifecycle: HRS

Stock market activities over lifecycle

Back to HRS variable definitions

PSID - Asset share by health status 45–55

HRS - Asset share by health status 45–55

Health & Retirement Study (RAND-HRS) 1992–2018

- Health and Retirement Study (RAND-HRS) panel data survey
- The majority of them are between 51-61 years
- $\,$ Limit sample to heads of households and age group of 40–80 with wealth info
- In regressions we use reduced sample of 60-70 year olds
- Variables: labor market behavior, educational attainment, family background, government program participation, family life, health issues, assets, and income

HRS: Full and restricted sample

Asset holdings over time

HRS summary statistics I

	(1) w/H.Info Age:40-80	(2) Sick 45-55 A:40-80	(3) Alive60-70 A:40-80	(4) All A:60-70	(5) w/H.Info A:60-70	(6) Sick 45-55 A:60-70	1
Sick at 45_55	0.30	1.00	0.28	0.27	0.27	1.00	
Health Lim.Wrk at 45_55	0.27	0.62	0.26	0.25	0.25	0.60	
Health Limits Work	0.30	0.58	0.31	0.34	0.34	0.63	
Spouse: Health Limits Work	0.24	0.32	0.25	0.27	0.27	0.36	
Unemployed at 45_55	0.30	0.57	0.28	0.27	0.27	0.53	
Uninsured at 45_55	0.29	0.35	0.28	0.27	0.27	0.34	
P(Stocks incl. 401k)	0.48	0.26	0.50	0.47	0.49	0.25	
P(Safe Assets incl.401k)	0.80	0.63	0.81	0.81	0.82	0.65	
Risky Assets incl. 401k (\$1,000)	61.38	19.31	67.08	66.92	73.60	22.46	
Risky Assets excl. 410k (\$1,000)	51.35	15.43	57.21	60.65	64.55	19.21	
Safe Assets incl. 401k (\$1,000)	79.55	30.16	85.19	86.04	94.45	35.42	
Safe Assets excl.401k (\$1,000)	65.13	24.58	70.99	77.01	81.44	30.75	
Risky Asset Share	0.20	0.10	0.21	0.20	0.20	0.10	
Safe Asset Share	0.60	0.52	0.61	0.62	0.62	0.55	
Safe Assets incl. Bonds (\$1,000)	38.30	16.26	41.26	45.96	45.46	19.62	
Stocks and mutual funds (\$1,000)	28.69	8.39	32.08	34.41	34.15	9.81	
Bonds (\$1,000)	2.76	0.81	3.14	3.70	3.45	1.02	
IRA/Keogh net value (\$1,000)	49.50	15.36	54.85	57.29	66.37	20.53	
DC pension wealth (\$1,000)	24.44	9.46	24.08	15.30	22.06	7.92	
Debt (\$1,000)	6.81	6.97	6.40	5.12	5.75	5.23	
Net value of primary residence (\$1,000)	115.08	63.48	121.96	124.29	134.84	74.12	
Mortgage (\$1,000)	46.91	27.83	45.72	34.24	43.52	25.76	
Other home loans (\$1,000)	3.99	1.89	4.27	3.40	4.31	2.04	
Income Risk Aversion	3.20	3.26	3.20	3.29	3.25	3.33	
Financial planning horizon	3.11	2.86	3.11	3.03	3.07	2.79	
Prob. live to 75	61.35	48.72	62.07	62.78	61.98	49.32	

HRS summary statistics II

Prob. live to 85	41.30	30.98	41.48	42.84	42.67	30.56
Age	59.85	58.62	61.42	64.63	64.15	63.92
Female	0.31	0.39	0.29	0.34	0.29	0.39
Married/Partnered	0.58	0.47	0.58	0.56	0.58	0.45
Nr. Children Alive	2.91	3.15	2.97	3.19	3.00	3.27
Black	0.22	0.30	0.21	0.21	0.20	0.28
Hispanic	0.13	0.21	0.12	0.11	0.12	0.20
No high school degree	0.25	0.43	0.25	0.30	0.25	0.45
High school degree	0.52	0.48	0.52	0.50	0.51	0.46
College or higher	0.23	0.10	0.23	0.20	0.23	0.09
Labor income (\$1,000)	32.20	16.12	30.46	19.98	23.39	9.80
Pre-govt HH income (\$1,000)	76.37	43.80	76.45	66.74	73.35	40.59
Employed	0.52	0.35	0.48	0.32	0.36	0.21
Receives Social Security	0.72	0.76	0.84	0.90	0.88	0.91
Health Excellent	0.12	0.02	0.12	0.11	0.09	0.02
Health Very Good	0.28	0.07	0.29	0.27	0.28	0.08
Health Good	0.32	0.23	0.32	0.32	0.33	0.27
Health Fair	0.20	0.46	0.20	0.21	0.21	0.41
Health Poor	0.08	0.22	0.08	0.09	0.08	0.22
First rep. health Excellent	0.20	0.02	0.22	0.20	0.22	0.02
First rep. health Very Good	0.28	0.06	0.28	0.27	0.28	0.06
First rep. health Good	0.29	0.16	0.28	0.29	0.29	0.15
First rep. health Fair	0.16	0.52	0.14	0.16	0.14	0.52
First rep. health Poor	0.07	0.24	0.07	0.08	0.07	0.25
Healthy	0.72	0.32	0.72	0.70	0.71	0.37
Body Mass Index	28.95	30.44	28.81	28.50	29.01	30.48
Smoker	0.23	0.31	0.21	0.19	0.19	0.25
OOP health exp. (\$1,000)	3.02	3.70	3.12	3.30	3.34	3.69
Total OOP exp. HH (\$1,000)	4.90	5.30	5.12	5.26	5.54	5.49
Insured	0.83	0.81	0.85	0.88	0.88	0.87
Uninsured	0.17	0.19	0.15	0.12	0.12	0.13

HRS summary statistics III

Public health insurance	0.32	0.47	0.34	0.42	0.41	0.59
Private health insurance	0.52	0.34	0.51	0.46	0.47	0.28
Observations	73465	22243	59262	54707	24773	6755

HRS summary statistics IV

Back to HRS variable definitions

Preference/belief differences by type

Back to HRS variable definitions

HRS: Stock share at 60–70

	(1)	(2)	(3)	(4)	(5)
Sick at 45_55	-0.025*** (0.007)	-0.030*** (0.009)	-0.038*** (0.010)	0.003 (0.015)	-0.002 (0.012)
Unemployed at 45_55	-0.026*** (0.007)	-0.027*** (0.009)	-0.029*** (0.010)	0.005 (0.014)	-0.003 (0.012)
Uninsured at 45_55	-0.024*** (0.007)	-0.013 (0.009)	-0.029*** (0.009)	0.006 (0.014)	0.020* (0.012)
Observations R ²	6144 0.290	6111 0.284	6144	3072	3065 0.080
Conditional P(Y>0)	No	No	No	Yes	Yes
Random Effects	No	No	Yes	Yes	No
Weighted	No	Yes	No	No	Yes

Selection model: PSID (top) and HRS (bottom)

	Stock Share	P(Stocks)	Safe A. Share	P(Safe A.)
Sick at 45_55	0.003	-0.271***	0.036***	-0.198***
	(0.015)	(0.051)	(0.009)	(0.058)
Unemployed at 45_55	0.034***	-0.175***	0.003	-0.232***
	(0.012)	(0.047)	(0.008)	(0.053)
Uninsured at 45_55	-0.027	-0.382***	0.044***	-0.170***
	(0.026)	(0.076)	(0.012)	(0.064)
Observations	5625		5625	
	Stock Share	P(Stocks)	Safe A. Share	P(Safe A.)
Sick at 45_55	-0.008	-0.289***	0.040***	-0.200***
	(0.007)	(0.026)	(0.005)	(0.027)
Unemployed at 45_55	0.006	-0.248***	0.023 ^{***}	-0.179***
	(0.006)	(0.023)	(0.004)	(0.026)
Uninsured at 45_55	-0.011*	-0.317***	0.043 ^{***}	-0.272***
	(0.006)	(0.023)	(0.005)	(0.025)
Observations	24007		24007	

PSID - Two Part Model

	Stock Share	P(Stocks)	Safe A. Share	P(Safe A.)
Sick at 45_55	0.000	-0.095***	0.040***	-0.039***
	(0.015)	(0.018)	(0.011)	(0.013)
Unemployed at 45_55	0.035***	-0.035**	-0.006	-0.039***
	(0.013)	(0.016)	(0.010)	(0.011)
Uninsured at 45_55	-0.003	-0.122***	0.052 ^{***}	-0.097***
	(0.027)	(0.019)	(0.012)	(0.021)
Observations	2335	5625	4746	5625

HRS - Two Part Model

	Stock Share	P(Stocks)	Safe A. Share	P(Safe A.)
Sick at 45_55	-0.003	-0.077***	0.031***	-0.055***
	(0.012)	(0.018)	(0.010)	(0.014)
Health Lim.Wrk at 45_55				
Unemployed at 45_55	-0.003	-0.070***	0.036 ^{***}	-0.011
	(0.012)	(0.016)	(0.010)	(0.012)
Uninsured at 45_55	0.018	-0.061***	0.010	-0.046***
	(0.012)	(0.015)	(0.010)	(0.012)
Observations	3065	6111	5111	6111

Back to PSID regression results

Preferences

Preferences

$$u(c_j, \ell_j; \bar{n}_j) = \frac{\left(\left(\frac{c_j}{\omega_{j,\vartheta}}\right)^{\eta} \times \left[\ell_j - \mathbb{1}_{[0 < n_j]} \times \bar{n}_j\right]^{1-\eta}\right)^{1-\sigma}}{1-\sigma} + \bar{u}$$

Warm-glow bequest

$$u^{\mathsf{beq}}\left(\mathbf{a}_{j}\right) = \theta_{1} \frac{\left(\mathbf{a}_{j} + \theta_{2}\right)^{\left(1-\sigma\right)\eta}}{1-\sigma}$$

Health

Health:

- 5 idiosyncratic (exogenous) health groups $\epsilon^h \in \{1, 2, 3, 4, 5\}$
- Age dependent health expenditure $m(j, \vartheta, \epsilon^h)$
- Health state:

$$h\left(\epsilon^{h}\right) = \begin{cases} \text{healthy} & \text{if } \epsilon^{h} \in \{\text{excellent, very good, good}\},\\ \text{sick} & \text{if } \epsilon^{h} \in \{\text{fair, poor}\}. \end{cases}$$

- Survival probability: $\pi\left(h\left(\epsilon^{h}
 ight)
 ight)$
- Health and labor income shocks:

$$\Pr\left(\epsilon_{j+1}^{h}|\epsilon_{j}^{h}\right)\in\Pi^{h}\left(j,\vartheta\right) \text{ , } \Pr\left(\epsilon_{j+1}^{\textit{incP}}|\epsilon_{j}^{\textit{incP}}\right)\in\Pi_{j}^{\textit{incP}}$$

Health insurance

• Workers: exogenous employer HI

$$\epsilon_{j,\vartheta}^{\mathsf{ehi}} = \left\{ egin{array}{c} 0 & ext{not privately insured,} \\ 1 & ext{privately health insurance,} \end{array}
ight.$$
 for $j \leq J_w$

- $\epsilon_{j,\vartheta}^{\mathsf{ehi}}$ follows Markov process with $P\left(\epsilon_{j+1,\vartheta}^{\mathsf{ehi}}|\epsilon_{j,\vartheta}^{\mathsf{ehi}}\right)\in\Pi_{j,\vartheta}^{\mathsf{ehi}}$
- Coinsurance: γ^{ehi}
- Premium: prem^{Ins}_j
- **Poor:** qualify for Medicaid w/ coinsurance γ^{maid} if $y_i^{\text{agi}} < y^{\text{maid}}$ and $a_j < a^{\text{maid}}$
- Retired $j > J_1$ have Medicare w/ coinsurance γ^{mcare} and premium prem^{mcare}

Out-of-pocket health spending

$$o_{j}\left(m_{j}, \epsilon_{j,\vartheta}^{\text{ehi}}, y_{j}^{\text{agi}}, a_{j}\right) = \left\{\begin{array}{l} \overbrace{1_{[\text{maid-yes}]}\gamma^{\text{maid}}}^{\text{primary HI}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right) & \text{if } \overbrace{\epsilon_{j,\vartheta}^{\text{ehi}} = 0 \land j \leq J_{w}}^{\text{working, no private HI}} \\ \overbrace{1_{[\text{maid-yes}]}\gamma^{\text{maid}}}^{\text{Medicaid is secondary HI}} \times \left(\overbrace{\gamma^{\text{ehi}}}^{\text{primary}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right)\right) & \text{if } \overbrace{\epsilon_{j,\vartheta}^{\text{ehi}} = 1 \land j \leq J_{w}}^{\text{working, with private HI}} \\ \overbrace{1_{[\text{maid-yes}]}\gamma^{\text{maid}}}^{\text{Medicaid is secondary HI}} \times \left(\overbrace{\gamma^{\text{mary}}}^{\text{primary}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right)\right) & \text{if } \overbrace{j>J_{w}}^{\text{retired, with Medicare}} \\ \end{array}\right)$$

Labor income

- Profile by health type: $\bar{e}_j = \bar{e}\left(j, \vartheta, h\left(\epsilon^h\right)\right)$
- Exogenous income shock: $e_j\left(\vartheta, \epsilon^h, \epsilon^{incP}\right) = \bar{e}_j\left(\vartheta, h\left(\epsilon^h\right)\right) \times \epsilon^{incP}$

• Labor income: $y_j\left(\ell_j, \vartheta, \epsilon_j^{incP}, \epsilon_j^h\right) = \widehat{w} \times e_j\left(\vartheta, \epsilon_j^{incP}, \epsilon_j^h\right) \times (1 - \ell_j)$

Savings/Assets

- Two types of assets
 - risk-free bond b w real return r^b
 - risky stock *s* w/ return $\tilde{r}^{s} = r^{b} + \mu^{s} + \epsilon^{s}$ and risk premium $\mu_{s} > 0$, stoch. return $\epsilon^{s} \sim N(0, \sigma_{\epsilon^{s}}^{2})$

– assume:
$$ilde{r}^s = rac{1+ ilde{g}+d}{1+\pi}-1$$

Net returns (see Gomes, Michaelides and Polkovnichenko, 2009)

$$\begin{split} \bar{r}_{net}^{b} &= \frac{1 + \left[\left(r^{b} + 1 \right) \left(1 + \pi \right) - 1 \right] \left(1 - \tau^{d} \right)}{1 + \pi} - 1 \\ \tilde{r}_{net}^{s} &= \frac{1 + \tilde{g} \left(\epsilon^{s} \right) \left(1 - \tau^{g} \right) + d \left(1 - \tau^{d} \right)}{1 + \pi} - 1 \end{split}$$

- W/ exogenous parameters
 - d, g̃: dividend vs. capital gains
 - τ^d , τ^g : dividend vs. capital gains tax
 - π inflation
- Borrowing limit $b_{j+1} \geq \underline{b}$, stock holdings $s_{j+1} \geq 0$
- Transaction cost q_{ϑ} when investing in risky asset

Taxes and transfers

Taxes

Labor income (Benabou 2002; Heathcote, Storesletten and Violante 2017)

$$ext{tax}^{y}(y_{j}^{ ext{tax}}) = \max\left[0, y_{j}^{ ext{tax}} - \lambda imes \left(y_{j}^{ ext{tax}}\right)^{(1- au)}
ight]$$

- 0 < au < 1 progressivity
- λ scaling
- Payroll: tax^{ss} $\left(y_{j}^{ss}; \bar{y}^{ss}\right)$ and tax^{mcare} $\left(y_{j}^{ss}\right)$
- Consumption: τ^c
- Capital: au^d on dividends and au^g on capital gains
- Transfers
 - Social Security: trss
 - Medicare, Medicaid
 - Lump-sum transfers tr^{si} to guarantee c_{min}

Back to model overview

Worker Problem I

• State vec:
$$x_j = \left\{ \vartheta, a_j, \epsilon_j^{incP}, \epsilon_j^h, \epsilon_j^{ehi} \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4\} \times \{1, 2, 3, 4, 5\} \times \{0, 1\}$$

Worker Problem II

• Expectation $\Rightarrow \mathbb{E}_{\epsilon_{j+1}^{incP}, \epsilon_{j+1}^{h}, \epsilon_{j+1}^{ehi}, \epsilon_{j+1}^{s}|\epsilon_{j}^{incP}, \epsilon_{j}^{h}, \epsilon_{j}^{ehi}}$

$$V(x_{j}) = \max_{\left\{c_{j}, \ell_{j}, \alpha_{j}\right\}} \left\{ u(c_{j}, \ell_{j}) + \beta \mathbb{E} \left[\underbrace{\pi_{j}\left(h\left(\varepsilon_{j}^{h}\right)\right)}^{\text{Hith-long channel}} V(x_{j+1}) + \underbrace{\left(1 - \pi_{j}\left(h\left(\varepsilon_{j}^{h}\right)\right)\right)}^{\text{Health-longevity channel}} u^{\text{beq}}(a_{j+1}) \right] \right\}$$

s.t.

$$\mathbf{a}_{j+1} = \tilde{R}_{j+1} \begin{pmatrix} \underbrace{\mathsf{Health income channel}}_{a_j + y_j \left(\ell_j, \vartheta, \varepsilon_j^{incP}, \varepsilon_j^h\right)} + \mathsf{tr}_j^{\mathsf{si}} - \overbrace{o_j \left(m_j, \varepsilon_{j,\vartheta}^{\mathsf{ehi}}, y_j^{\mathsf{agi}}, a_j\right)}^{\mathsf{Health-expenditure channel}} \\ -\underbrace{1_{\left[\varepsilon_j^{\mathsf{ehi}} = 1\right]} \mathsf{prem}_j^{\mathsf{ehi}}}_{\mathsf{Health-exp. channel}} - \underbrace{\mathsf{tax}_j}_{\mathsf{Health-exp. channel}} - (1 + \tau^c) c_j - 1_{\left[\alpha_j > 0\right]} q \end{pmatrix}}_{\mathsf{Health-exp. channel}}$$

Health-wealth portfolio channel

$$\begin{split} \tilde{R}_{j+1} &= \alpha_j \left(1 + \tilde{r}_{net,j+1}^s \right) + \left(1 - \alpha_j \right) \left(1 + \bar{r}^b \right) \\ \tan_j &= \tan^y \left(y_j^{tax} \right) + \tan^{ss} \left(y_j^{ss} ; \ \bar{y}^{ss} \right) + \tan^{mcare} \left(y_j^{ss} \right) \\ \underline{b} &\leq b_{j+1}, \ 0 \leq s_{j+1} \end{split}$$

Worker Problem III

- Total taxable income $y_j^{\rm tax}$ and payroll tax eligible income y_j^{ss}

$$\begin{aligned} y_j^{\text{tax}} &= y_j - \mathbf{1}_{[\text{i}n_{j+1}=2]} \text{prem}_j^{\text{ehi}} \\ &- \max \left[0, \ o_j \left(m_j, \epsilon_{j,\vartheta}^{\text{ehi}}, y_j^{\text{agi}}, a_j \right) - 0.075 \times (y_j + r_b b_j + r_s s_j) \right] \end{aligned}$$

$$y_j^{ss} = y_j - 1_{[in_{j+1}=2]} prem_j^{ehi}$$

Taxes

$$\begin{split} & \mathsf{tax}_j = \mathsf{tax}^y \left(y_j^{\mathsf{tax}} \right) + \mathsf{tax}^{\mathsf{ss}} \left(y_j^{\mathsf{ss}} ; \ \bar{y}^{\mathsf{ss}} \right) + \mathsf{tax}^{\mathsf{mcare}} \left(y_j^{\mathsf{ss}} \right) \\ & \mathsf{tax}^{ss} \left(y_j^{\mathsf{ss}} ; \ \bar{y}^{\mathsf{ss}} \right) = \tau^{ss} \times \min \left[y_j^{\mathsf{ss}} ; \ \bar{y}^{\mathsf{ss}} \right] \\ & \mathsf{tax}^{\mathsf{mcare}} \left(y_j^{\mathsf{ss}} \right) = \tau^{\mathsf{mcare}} \times y_j^{ss} \end{split}$$

Worker Problem IV

Transfers

$$\begin{aligned} \mathrm{tr}_{j}^{\mathrm{si}} &= \max\left[\mathbf{0}, \ c_{\min} + o\left(m_{j}\right) - y_{j}^{\mathrm{at}} - a_{j}\right] \\ y_{j}^{\mathrm{at}} &= y_{j} - \mathrm{tax}_{j} \end{aligned}$$

Average past labor earnings:

$$\bar{y}^{\vartheta} = \int_{j \leq J_r} w \times e(x) \times n(x) d\Lambda(x_j(\vartheta))$$

Back to worker problem

Retiree's Dynamic Optimization Problem I

• State vector: $x_j = \left\{ \vartheta, a_j, \frac{e_j^h}{e_j} \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4, 5\}$

Expectation $\Rightarrow \mathbb{E}_{\epsilon_{j+1}^h, \epsilon_{j+1}^s | \epsilon_j^h}$

s.t.

$$\mathbf{a}_{j+1} = \tilde{R}_{j+1} \left(\begin{array}{c} \underbrace{\mathbf{a}_{j} + \mathrm{tr}_{j}^{\mathrm{ss}}\left(\bar{y}^{\vartheta}\right) + \mathrm{tr}_{j}^{\mathrm{si}} - \overbrace{\mathbf{o}_{j}\left(\mathbf{m}_{j}, \varepsilon_{j,\vartheta}^{\mathrm{ehi}}, y_{j}^{\mathrm{agi}}, \mathbf{a}_{j}\right)}^{\mathrm{Health-expenditure channel}} \\ -\mathrm{prem}_{j}^{\mathrm{mcare}} \underbrace{-\mathrm{tax}^{y}\left(y_{j}^{\mathrm{tax}}\right)}_{\mathrm{Health-exp. channel}} - (1 + \tau^{c}) c_{j} - \mathbf{1}_{\left[\alpha_{j} > 0\right]} q \end{array} \right)$$

Health-wealth portfolio channel

$$\tilde{R}_{j+1} = \left(\alpha_j \left(1 + \tilde{r}_{net,j+1}^s\right) + (1 - \alpha_j) \left(1 + \bar{r}^b\right)\right)$$
$$\underline{b} \le b_{j+1}$$
$$0 \le s_{j+1}$$

Retiree's Dynamic Optimization Problem II

$$\begin{split} y_{j}^{\text{tax}} &= \text{tr}_{j}^{\text{ss}} - \max\left[0, \ (o_{j} \ (m_{j}) + \text{prem}^{\text{mcare}}) - 0.075 \times \left(r_{b} \times b_{j} + r_{s} \times s_{j} + \text{tr}_{j}^{\text{ss}}\right)\right] \\ \text{tr}_{j}^{\text{si}} &= \max\left[0, \ c_{\text{min}} + o_{j} \ (m_{j}) + \text{prem}^{\text{mcare}} + \text{tax}^{y} \ (y_{j}^{\text{tax}}) - a_{j} - \text{tr}_{j}^{\text{ss}}\right] \end{split}$$

Back to retired problem

Estimated parameters

Parameters	Value	Std. error	P-value
Time discount factor: β	0.9848	0.0006	0.000
Consumption weight: η	0.2753	0.004	0.009
Strength of bequest motive: θ_1	108.59	24.97	0.025
Stock market participation cost: $q(\text{age-group}, \vartheta, \epsilon^h)$			
Age 40–59	Fig. above		
Age 60–64	Fig. above		
Age 65-80	Fig. above		

Estimation targets:

- Wealth-to-income ratio at 65
- Avge. work participation 40–64
- Asset holdings of 85 year olds
- Risky asset market participation rates by education, health and age
 - three education levels (low, medium and high), two health status (sick and healthy), and three age groups (40-59, 60-64, 65-80)

Back to calibration

Exogenous parameters

Parameter description	Parameter values	Source
Periods	J = 55	
Work periods	$J_W = 25$	Age 40–64
Years modeled	years $= 55$	Age 40–94
Relative risk aversion	$\sigma = 3$	Standard values between $2.5 - 3.5$
Survival probabilities	$\pi_{j}\left(h\left(\epsilon^{h} ight) ight)$ see online appendix	İmrohoroğlu and Kitao (2012)
Health Shocks	ϵ_i^h see online appendix	MEPS 1996–2018
Health transition prob.	Π_i^h see online appendix	MEPS 1996–2018
Persistent labor shock autocor.	$\rho = 0.977$	French (2005)
Risk premium	$\mu = 0.04$	Mehra and Prescott (1985)
Risk free rate	$r^{b} = 0.02$	McGrattan and Prescott (2000)
RA log return std. dev.	$\sigma_{e^{S}} = 0.157$	Mehra and Prescott (1985)
Variance of transitory labor shock	$\sigma_{e^{incP}}^2 = 0.0141$	French (2005)
Bias adjusted wage profile	$\bar{e}_{j}\left(artheta,h\left(\epsilon^{h} ight) ight)$ see online appendix	MEPS 1996-2018
Private employer HI	$\gamma^{ehi} = 0.31$	MEPS 1996-2018
Medicaid coinsurance	$\gamma^{maid} = 0.11$	MEPS 1996-2018
Medicare coinsurance	$\gamma^{mcare} = 0.30$	MEPS 1996-2018
Consumption tax	$\tau^{c} = 5\%$	IRS
Bequest parameter	$\theta_2 = \$500,000$	De Nardi (2004); French (2005)
Payroll tax Social Security	$ au^{ss} = 10.6\%$	IRS
Payroll tax Medicare	$\tau_{.}^{\text{mcare}} = 2.9\%$	SSA (2007)
Tax progressivity	$\tau_1' = 0.053$	Guner, Lopez-Daneri and Ventura (2016)
Dividend tax	$\tau^{d} = 25\%$	Gomes, Michaelides and Polkovnichenko (2009)
Capital gains tax	$\tau^g = 20\%$	Gomes, Michaelides and Polkovnichenko (2009)
Dividend yield	d = 3.2%	Gomes, Michaelides and Polkovnichenko (2009)
Inflation	$\pi^i = 2.8\%$	Gomes, Michaelides and Polkovnichenko (2009)

Exogenous health status

Internal (calibrated) parameters

Parameters	Values	Calibration target	Model	Data	Source
Fixed cost of work Utility constant	$ar{n}_{j,artheta} \ ar{u} = 10$	Avge. work part. VSL of workers	Pan.2,Fig.73 2.5 mill.\$	Pan.2,Fig.73 1–16 mill.\$	MEPS 1996–2018 Viscusi (1993)
Prog. tax scaling Medicaid asset test Medicaid income test Consumption floor	$ au_{0}^{i} = 1.016$ $ar{a}^{maid} = \$75k$ $ar{y}^{maid} = \$5.5k$ $c_{min} = \$3.2k$	Age 40–64 on Maid Age 20–39 on Maid Frac. net-ass.<\$5k	Pan.2,Fig.74 Pan.2,Fig.74 20% (of popul.)	Pan.2,Fig.74 Pan.2,Fig.74 20%	Jung and Tran (2022) MEPS 1996–2018 MEPS 1996–2018 Jeske and Kitao (2009)

Calibration target: labor force participation

Calibration targets

Calibration targets (only Medicaid is a target)

Note: only Medicaid take-up is a target

Back to calibration

Performance (not targets) Risky assets participation by health-at-45-55

 $\,$ Model replicates RA participation pattern by health-at-45–55 \Rightarrow this was not a target

Back to performance

Performance (not targets)

Data

Model

Bench. model: Risky assets by health at age 45–55

	Healthy at 45–55	Sick at 45–55
- Risky asset share α (at 65)	50%	31%
- Stock part. (at 40) - Stock part. (at 65)	32% 51%	26% 32%
- Wealth-to-inc (at 65)	5.07	3.29

Model performance (not targets)

Model performance: labor income (not targets)

Performance: hours worked

Model performance (not targets)

Moments	Model	Data	Sources
Medical exp/income	Figure 11	Figure 11	MEPS 1996–2018
Gini medical spending	0.56	0.60	MEPS 1996–2018
Gini gross income	0.40	0.46	MEPS 1996–2018
Gini labor income	0.55	0.54	MEPS 1996–2018
Gini financial assets	0.73	0.76	PSID 1984–2019
Frisch labor supply elasticities	1.19–1.51	1.1-1.7	Fiorito and Zanella (2012)
Avge. interest rate: r	5.9%	5.2 - 5.9%	Gomme, Ravikumar and Rupert (2011)
Wealth: P90/P50 at 65	14.47	16.84	PSID 1984–2019

Risky asset shares regressions

	No-HS		HS		College	
	Stock Sh.	P(Stocks)	Stock Sh.	P(Stocks)	Stock Sh.	P(Stocks)
Sick at 45_55	-0.023***	-0.143***	-0.011***	-0.263***	-0.001	-0.162***
	(0.004)	(0.007)	(0.002)	(0.004)	(0.001)	(0.006)
Unemployed at 45_55	-0.106***	-0.912***	-0.010***	-0.381***	0.000	-0.346***
	(0.017)	(0.008)	(0.003)	(0.004)	(0.002)	(0.006)
Uninsured at 45_55	-0.017***	-0.078***	-0.001	-0.072***	-0.002***	-0.034***
	(0.003)	(0.008)	(0.001)	(0.004)	(0.001)	(0.007)
Observations	214841		429942		200359	

• Risky asset shares: model w/ initial health condition controls

• Sample of individuals who are healthy at age 40

Back to performance

VSL details

Back to performance

Value of statistical life I

- The VSL is the monetary value corresponding to reduction in mortality risk that prevents **one** statistical death
- Follow Aldy and Smyth (2014)
 - Consider small increase in surv. probability $\Delta \pi_j \left(\varepsilon_j^h\right)$ so that surv. prob. is $\pi_j \left(\varepsilon_j^h\right) + \Delta \pi_j \left(\varepsilon_j^h\right)$
 - Using this new surv. prob. solve HH with otherwise identical paras $\Rightarrow V^*\left(\vartheta, a_j, \epsilon_j^{\text{incP}}, \epsilon_j^h, \epsilon_j^{\text{ehi}}\right)$
 - Search additional wealth Δa_j so that

$$V\left(\vartheta, a_{j} + \Delta a_{j}, \epsilon_{j}^{\mathsf{incP}}, \epsilon_{j}^{h}, \epsilon_{j}^{\mathsf{ehi}}\right) = V^{*}\left(\vartheta, a_{j}, \epsilon_{j}^{\mathsf{incP}}, \epsilon_{j}^{h}, \epsilon_{j}^{\mathsf{ehi}}\right)$$

Calculate VSL as

$$\mathsf{VSL}_{j}\left(\vartheta, \mathsf{a}_{j}, \epsilon_{j}^{\mathsf{incP}}, \epsilon_{j}^{\mathsf{h}}, \epsilon_{j}^{\mathsf{ehi}}\right) = \frac{\Delta \mathsf{a}_{j}}{\Delta \pi_{j}\left(\varepsilon_{j}^{\mathsf{h}}\right)}.$$

Value of statistical life II

- Intuitively, the VSL is the marginal rate of substitution between wealth and survival probability
- VSL range between 1–16 million USD according to a survey by Viscusi (1993)
- We target 2.5 million USD for the working age population of 40–65 year olds

Back to VSL

Exp. 8 (no bad health at 45–55): RA participation

Exp. 8 (no bad health 45–55): Asset profiles

Exp. 7 (no bad health-death): RA participation

Exp. 7 (no bad health-death): Asset profiles

Exp. 1 (No RA): RA participation

Exp. 1 (No RA): Asset profiles

Exp. 9 (no bad health + no RA): RA participation

Exp. 9 (no bad health + no RA): Asset profiles

Decomposition experiments done

Back to decomposition experiments table

Policy experiments

- Exp 1: Expansion of Medicare to 20-64 year olds (UPHI)
- Exp 2: Expansion of EHI to all workers

Exp. 1 (Medicare-for-all): RA participation

Exp. 1 (Medicare for all): Asset profiles

Exp. 1 (Medicare for all): Labor profiles

98 / 33

Exp. 2 (EHI all workers): RA participation profiles

Exp. 2 (EHI all workers): Asset profiles

Exp. 2 (EHI all workers): Labor profiles

101 / 33

HI experiments done

Back to HI policy experiments table

References I

- Agarwal, Sumit and Bhashkar Mazumder. 2013. "Cognitive Abilities and Household Financial Decision Making." American Economic Journal: Applied Economics 5(1):193–207.
- Agnew, Julie, Pierluigi Balduzzi and Annika Sundén. 2003. "Portfolio Choice and Trading in a Large 401(k) Plan." American Economic Review 93(1):193–215.
- Alan, Sule. 2006. "Entry costs and stock market participation over the life cycle." Review of Economic Dynamics 9(4):588-611.
- Aldy, Joseph E. and Seamus J. Smyth. 2014. Heterogeneity in the Value of Life. Nber working Paper no. 20206.
- Ayyagari, Padmaja and Daifeng He. 2016. "Medicare Part D and Portfolio Choice." The American Economic Review 106(5):339–342.
- Bagliano, Fabio C., Carolina Fugazza and Giovanna Nicodano. 2014. "Optimal Life-Cycle Portfolios for Heterogeneous Workers." *Review of Finance* 18(6):2283–2323.
- Bagliano, Fabio C., Carolina Fugazza and Giovanna Nicodano. 2019. "Life-Cycle Portfolios, Unemployment and Human Capital Loss." Journal of Macroeconomics 60:325–340.
- Benabou, Roland. 2002. "Tax and Education Policy in a Heterogeneous Agent Economy: What Levels of Redistribution Maximize Growth and Efficiency?" *Econometrica* 70(2):481–517.
- Benhabib, Jess, Alberto Bisin and Mi Luo. 2019. "Wealth Distribution and Social Mobility in the US: A Quantitative Approach." American Economic Review 109(5):1623–1647.
- Benhabib, Jess, Alberto Bisin and Shenghao Zhu. 2015. "The Wealth Distribution in Bewley Models with Capital Income Risk." Journal of Economic Theory 159:459–515.
- Böckerman, Petri, Andrew Conlin and Rauli Svento. 2021. "Early Health, Risk Aversion and Stock Market Participation." Journal of Behavioral and Experimental Finance 32:100568.
- Bonaparte, Yosef, Russell Cooper and Guozhong Zhu. 2012. "Consumption smoothing and portfolio rebalancing: The effects of adjustment costs." Journal of Monetary Economics 59(8):751–768.
- Bressan, Silvia, Noemi Pace and Loriana Pelizzon. 2014. "Health Status and Portfolio Choice: Is Their Relationship Economically Relevant?" International Review of Financial Analysis 32:109–122.

References II

- Brunnermeier, Markus K. and Stefan Nagel. 2008. "Do Wealth Fluctuations Generate Time-Varying Risk Aversion? Micro-evidence on Individuals." American Economic Review 98(3):713–736.
- Campanale, Claudio, Carolina Fugazza and Francisco Gomes. 2015. "Life-Cycle Portfolio Choice with Liquid and Illiquid Financial Assets." Journal of Monetary Economics 71:67–83.
- Capatina, Elena. 2015. "Life-cycle Effects of Health Risk." Journal of Monetary Economics 74:67-88.
- Capatina, Elena and Michael Keane. 2023. "Health Shocks, Health Insurance, Human Capital, and the Dynamics of Earnings and Health.".
- Catherine, Sylvain. 2022. "Countercyclical Labor Income Risk and Portfolio Choices over the Life Cycle." The Review of Financial Studies 35(9):4016–4054.
- Chen, Chaoran, Zhigang Feng and Jiaying Gu. 2025. "Health, Health Insurance, and Inequality." International Economic Review 66(1):107–141.
- Christelis, Dimitris, Tullio Jappelli and Mario Padula. 2010. "Cognitive abilities and portfolio choice." European Economic Review 54(1):18–38.
- Cocco, João F., Francisco J. Gomes and Pascal J. Maenhout. 2005. "Consumption and Portfolio Choice over the Life Cycle." The Review of Financial Studies 18(2):491–533.
- Cooper, Russell and Guozhong Zhu. 2016. "Household Finance Over the Life-Cycle: What Does Education Contribute?" Review of Economic Dynamics 20:63–89.
- De Nardi, Mariacristina. 2004. "Wealth Inequality and Intergenerational Links." Review of Economic Studies 71:743–768.
- De Nardi, Mariacristina, Eric French and B. John Jones. 2010. "Why Do the Elderly Save? The Role of Medical Expenses." Journal of Political Economy 118(1):39–75.
- De Nardi, Mariacristina, Svetlana Pashchenko and Ponpoje Porapakkarm. 2024. "The Lifetime Costs of Bad Health." The Review of Economic Studies, Forthcoming .

Edwards, Ryan D. 2008. "Health Risk and Portfolio Choice." Journal of Business & Economic Statistics 26(4):472-485.

References III

- Egan, Mark L., Alexander MacKay and Hanbin Yang. 2021. "What Drives Variation in Investor Portfolios? Evidence from Retirement Plans." NBER Working Paper No. 29604.
- Fagereng, Andreas, Charles Gottlieb and Luigi Guiso. 2017. "Asset Market Participation and Portfolio Choice over the Life-Cycle." The Journal of Finance 72(2):705–750.
- Fiorito, Riccardo and Giulio Zanella. 2012. "The Anatomy of the Aggregate Labor Supply Elasticity." Review of Economic Dynamics 15(2):171–187.
- French, Eric. 2005. "The Effects of Health, Wealth, and Wages on Labour Supply and Retirement Behaviour." The Review of Economic Studies 72(2):395–427.
- Gabaix, Xavier, Jean-Michel Lasry, Pierre-Louis Lions and Benjamin Moll. 2016. "The Dynamics of Inequality." *Econometrica* 84(6):2071–2111.
- Gamble, Keith Jacks, Patricia Boyle, Lei Yu and David Bennett. 2015. "Aging and Financial Decision Making." Management Science 61(11):2603–2610.
- Goldman, Dana and Nicole Maestas. 2013. "Medical Expenditure Risk and Household Portfolio Choice." Journal of Applied Econometrics 28(4):527–550.
- Gomes, Francisco. 2020. "Portfolio Choice Over the Life Cycle: A Survey." Annual Review of Financial Economics 12(1):277–304.
- Gomes, Francisco, Alexander Michaelides and Valery Polkovnichenko. 2009. "Optimal savings with taxable and tax-deferred accounts." *Review of Economic Dynamics* 12(4):718–735.
- Gomes, Francisco, Michael Haliassos and Tarun Ramadorai. 2021. "Household Finance." Journal of Economic Literature 59(3):919–1000.
- Gomes, Francisco and Oksana Smirnova. 2021. "Stock Market Participation and Portfolio Shares Over the Life-Cycle." SSRN Working Paper No. 3808350.
- Gomme, Paul, B. Ravikumar and Peter Rupert. 2011. "The return to capital and the business cycle." *Review of Economic Dynamics* 14(2):262–278.

References IV

- Guner, Nezih, Martin Lopez-Daneri and Gustavo Ventura. 2016. "Heterogeneity and Government Revenues: Higher Taxes at the Top?" Journal of Monetary Economics 80:69–85.
- Hambel, Christoph, Holger Kraft and André Meyer-Wehmann. 2022. "When Should Retirees Tap Their Home Equity?" SSRN Working Paper No. 3681834.
- Heathcote, Jonathan, Kjetil Storesletten and Giovanni L Violante. 2017. "Optimal Tax Progressivity: An Analytical Framework." Quarterly Journal of Economics 132(4):1693–1754.
- Hosseini, Roozbeh, Karen Kopecky and Kai Zhao. 2021. "How Important Is Health Inequality for Lifetime Earnings Inequality?" Working Paper.
- Hugonnier, J. P. St-Amour and F. Pelgrin. 2013. "Health and (other) Asset Holdings." Review of Economic Studies 80(2):663–710.
- İmrohoroğlu, Selahattin and Sagiri Kitao. 2012. "Social Security Reforms: Benefit Claiming, Labor Force Participation, and Long-run Sustainability." American Economic Journal: Macroeconomics 4(3):96–127.
- Inkmann, Joachim, Alexander Michaelides and Yuxin Zhang. 2022. "Family Portfolio Choice over the Life Cycle." SSRN Working Paper No. 3965481.
- Jeske, Karsten and Sagiri Kitao. 2009. "U.S. Tax Policy and Health Insurance Demand: Can a Regressive Policy Improve Welfare?" Journal of Monetary Economics 56(2):210–221.
- Jung, Juergen and Chung Tran. 2016. "Market Inefficiency, Insurance Mandate and Welfare: U.S. Health Care Reform 2010." Review of Economic Dynamics 20:132–159.
- Jung, Juergen and Chung Tran. 2022. "Social Health Insurance: A Quantitative Exploration." Journal of Economic Dynamics and Control 139:104374.
- Jung, Juergen and Chung Tran. 2023. "Health Risk, Insurance and Optimal Progressive Income Taxation." Journal of the European Economic Association 21(5):2043–2097.
- Lindeboom, Maarten and Mariya Melnychuk. 2015. "Mental Health and Asset Choices." Annals of Economics and Statistics (119/120):65–94.

References V

- Liu, Xuan, Haiyong Liu and Zongwu Cai. 2021. "Time-Varying Relative Risk Aversion: Mechanisms and Evidence." SSRN Electronic Journal.
- Lusardi, Annamaria, Pierre-Carl Michaud and Olivia S. Mitchell. 2017. "Optimal Financial Knowledge and Wealth Inequality." Journal of Political Economy 125(2):431–477.
- Mahler, Lukas and Minchul Yum. 2024. "Lifestyle Behaviors and Wealth-Health Gaps in Germany." Econometrica 92(5):1697–1733.
- Mazzonna, Fabrizio and Franco Peracchi. 2020. "Are Older People Aware of Their Cognitive Decline? Misperception and Financial Decision Making." IZA Discussion Paper No. 13725.
- McGrattan, Ellen R. and Edward C. Prescott. 2000. "Is the stock market overvalues?" Quarterly Review, Federal Reserve Bank of Minneapolis 24:20–40.
- Mehra, Rajnish and Edward C. Prescott. 1985. "The equity premium: A puzzle." Journal of Monetary Economics 15(2):145-161.
- Merton, Robert C. 1971. "Optimum consumption and portfolio rules in a continuous-time model." Journal of Economic Theory 3(4):373–413.
- Nakajima, Makoto and Irina A. Telyukova. 2017. "Reverse Mortgage Loans: A Quantitative Analysis." The Journal of Finance 72(2):911–950.
- Nakajima, Makoto and Irina A. Telyukova. 2024. "Medical Expenses and Saving in Retirement: The Case of U.S. and Sweden." American Economic Journal: Macroeconomics.
- Parker, Jonathan A., Antoinette Schoar, Allison T. Cole and Duncan Simester. 2022. "Household Portfolios and Retirement Saving over the Life Cycle." NBER Working Paper No. 29881.
- Prados, María José. 2018. "Health and Earnings Inequality Over the Life Cycle: The Redistributive Potential of Health Policies." Working Paper, USC - Dornsife (Dissertation Paper, Dept. of Economics, Columbia University).

Rosen, Harvey S and Stephen Wu. 2004. "Portfolio Choice and Health Status." Journal of Financial Economics 72(3):457-484.

Rossi, Alberto G. and Stephen P. Utkus. 2021. "Who Benefits from Robo-advising? Evidence from Machine Learning." SSRN 3552671.

References VI

- Rossi, Alberto G. and Stephen Utkus. 2020. "The Needs and Wants in Financial Advice: Human versus Robo-advising." Working Paper.
- Samuelson, Paul A. 1969. "Lifetime Portfolio Selection By Dynamic Stochastic Programming." The Review of Economics and Statistics 51(3):239–246.
- Shimizutani, Satoshi and Hiroyuki Yamada. 2020. "Financial Literacy of Middle-Aged and Older Individuals: Comparison of Japan and the United States." The Journal of the Economics of Ageing 16:100214.
- SSA. 2007. "Social Security Update 2007." SSA Publication No. 05-10003.
- Tischbirek, Andreas. 2019. "Long-Term Government Debt and Household Portfolio Composition." Quantitative Economics 10(3):1109–1151.
- Viscusi, Kip W. 1993. "The Value of Risks to Life and Health." Journal of Economic Literature 31(4):1912-1946.
- Wachter, Jessica A. and Motohiro Yogo. 2010. "Why Do Household Portfolio Shares Rise in Wealth?" The Review of Financial Studies 23(11):3929–3965.
- Yogo, Motohiro. 2016. "Portfolio Choice in Retirement: Health Risk and the Demand for Annuities, Housing and Risky Assets." Journal of Monetary Economics 80:17–34.
- Zhou, Rui, Johnny Siu-Hang Li and Kenneth Zhou. 2022. "The Role of Longevity Annuities in Different Socioeconomic Classes: A Canadian Case Study." SSRN 4156290.