Health Heterogeneity, Portfolio Choice and Wealth Inequality

Juergen Jung Towson University Chung Tran
Australian National University

Towson University – Econ Seminar
October 2023

Disclaimer

This project was supported by a grant from the School of Emerging Technologies (SET) at Towson University and the Australian Research Council (ARC, Grant No.: DP210102784).

The content is solely the responsibility of the authors and does not represent the official views of the funding institutions.

Introduction

- Health and earnings/income/wealth inequality
 - Capatina and Keane (2023); De Nardi, Pashchenko and Porapakkarm (2022); Mahler and Yum (2022); Hosseini, Kopecky and Zhao (2021)
- Two channels
 - Health-longevity channel: survival rates ⇒ household choices ⇒savings/wealth accumulation
 - Health-income/expenditure channel: labor productivity, labor supply, health expenditure ⇒ savings/wealth accumulation
- Missing: Health-wealth portfolio channel
 - Wealth portfolio by health status ightarrow heterogeneous investment returns
 - Compounding of investment returns \rightarrow larger wealth gap over time
 - Benhabib, Bisin and Zhu (2015); Gabaix et al. (2016); Benhabib, Bisin and Luo (2019)

This paper

- Health-wealth portfolio channel
 - Quantify dynamic effects of health on wealth portfolio over lifecycle
- Empirical analysis: data + regression
 - Document the long-term effects of **poor health at 45–55** \Rightarrow risky asset share at 60–70
 - Reduced-form evidence from dynamic (panel) regression models using HRS data
- Structural analysis: model + counterfactual experiments
 - Stochastic lifecycle model: portfolio choice, health, and health insurance
 - Decompose effects of health on portfolio choice and wealth gap
 - Examine role of **health insurance** and wealth inequality

Findings

Empirical: HRS data

- Statistically significant differences of lifecycle patterns of risky asset share by "health at age 45–55"
- Health effect primarily via extensive/participation margin (in stock investments)

Structural: Lifecycle model

- Lifetime benefit/cost of good/bad health: considerable
 - annualized average benefit/cost: \$7,100
- The health-wealth portfolio channel is large
 - counterfactuals: P90/P50 ↓ between 51–61%
- Expansion of either public or private health insurance
 - wealth gap (rich/poor): ↓ between 15–60%
 - wealth gap (healthy/sick): ↓ between 16–22%

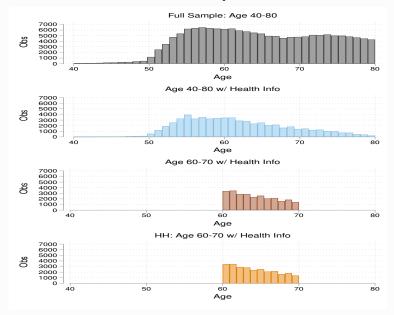
Mechanism

- Health-wealth portfolio channel is quantitatively important
- Mechanism
 - 1. Bad health \Rightarrow income losses and high expenditures $\Rightarrow \downarrow$ stock market participation
 - Health heterogeneity ⇒ Heterogeneity in wealth portfolio ⇒ heterogeneous investment returns
 - 3. Compounding of investment returns \Rightarrow larger wealth gap over time
 - 4. Expansion of health insurance $\Rightarrow \uparrow$ stock market participation $\Rightarrow \downarrow$ wealth gap

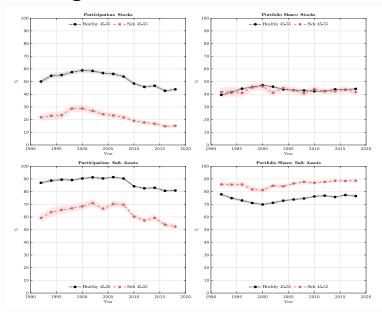
Related literature

- Macro-health economics
 - Capatina and Keane (2023); De Nardi, Pashchenko and Porapakkarm (2022); Hosseini, Kopecky and Zhao (2021); Mahler and Yum (2022); Chen, Feng and Gu (2022)
 - Jung and Tran (2023); Jung and Tran (2016); Capatina (2015); De Nardi,
 French and Jones (2010); Jeske and Kitao (2009); etc.
- Household finance ⇒ lifecycle portfolio choice models
 - Seminal works: Samuelson (1969); Merton (1971)
 - Surveys: Gomes (2020) and Gomes, Haliassos and Ramadorai (2021)
 - Recent related: Campanale, Fugazza and Gomes (2015); Fagereng, Gottlieb and Guiso (2017); Gomes and Smirnova (2021); Tischbirek (2019)
- Health+Investment Portfolio
 - Yogo (2016) focus on retirees and housing, model starts at 65
 - Lusardi, Michaud and Mitchell (2017) knowledge accum. for "sophisticated" assets, health only affects old
 - Hugonnier and Pelgrin (2013) endog. health, closed form but no lifecycle consideration

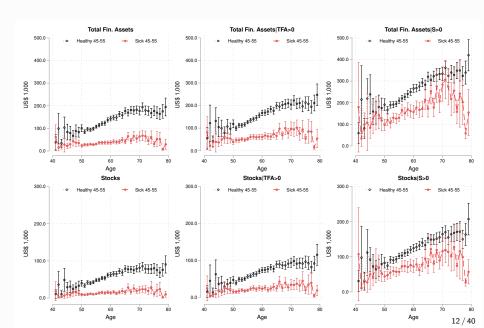
This paper: focus health at "45–55" on generating wealth gap via two assets at 65 + role of health insurance

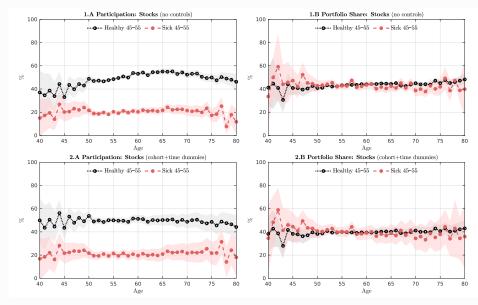

Health-wealth portfolio channel: Empirical evidence

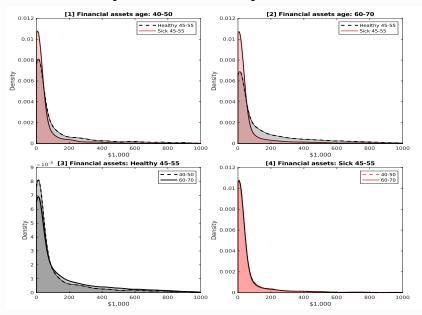
Health & Retirement Study (HRS) 1992-2018


- Financial wealth
 - Focus on financial wealth, abstract from housing
 - Collapse 20 asset categories into 2
 - safe assets (checking/savings accts, money market funds, CDs, government savings bonds, T-bills, corporate, municipal and foreign bonds, as well as bond funds)
 - 2. risky assets (stocks and mutual funds)
 - IRAs limited info \Rightarrow assign 45.8% of holdings to risky assets (Tischbirek, 2019)
- Health status
 - Five states: 1 excellent, 2 very good, 3 good, 4 fair, 5 poor
 - Two groups by health status at age 45-55:
 - Sick: 4-fair and 5-poor
 - Healthy: 1-excellent, 2-very good, 3-good health

More details


HRS: Full and restricted sample


Asset holdings over time


Asset holdings over the life cycle

Stock market activities over the life cycle

Wealth mobility over the life cycle

Reduced form: Poor health \Rightarrow risky asset share

The econometric model

$$y_{it} = \beta + \gamma \times 1_{\{\text{Sick 45-55}, i\}} + \delta \times Z_{it} + \varepsilon_{it}$$

- y_{it} risky asset share (in financial portfolio) at 60–70
- $^ 1_{\{{
 m Sick}\ 45-55,\ i\}}$ indicator "bad health in at least one survey wave between 45–55"
- Z_{it} controls
- ε_{it} error term

Stock share at 60-70

	(1)	(2)	(3)	(4)	(5)
Sick at 45_55	-0.044***	-0.042***	-0.053***	-0.003	-0.010
	(0.005)	(0.007)	(800.0)	(0.013)	(0.010)
Sick × Unemployed at 45 55	-0.001	-0.004	-0.010	-0.007	0.017
Sick × Offeriployed at +3_33	(0.008)	(0.010)	(0.011)	(0.021)	(0.017)
	(0.000)	(0.010)	(0.011)	(0.021)	(0.017)
Sick \times Uninsured at 45_55	0.035***	0.020**	0.038***	0.017	0.020
	(0.007)	(0.009)	(0.011)	(0.024)	(0.022)
Observations	24900	24750	24900	11402	11387
R^2	0.239	0.217			0.020
Conditional P(Y>0)	No	No	No	Yes	Yes
Random Effects	No	No	Yes	Yes	No
Weighted	No	Yes	No	No	Yes

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Stochastic lifecycle model

Lifecycle model: portfolio choice, health & HI

- · A stochastic lifecycle model of portfolio choice
 - Lifespan: Age 40-94
 - Three skill levels: No high school , High school and College
 - Two assets: Risky (stock) and safe (bond) assets
- Idiosyncratic shocks
 - 1. Health
 - Longevity
 - Health expenditure
 - Labor productivity
 - 2. Health insurance/employer type
 - 3. Labor
- Health insurance (HI)
 - Public HI: Medicaid & Medicare (w/ eligibility criteria)
 - Private HI: Employer sponsored HI (w/ community rating and tax deduct. premium)
- Government
 - Progressive inc. tax, payroll taxes, capital taxes (dividend, cap. gains & interest)
 - Soc. Security, Medicaid, Medicare, min. consumption program

Worker problem

- State vec: $x_j = \left\{ \vartheta, a_j, \epsilon_j^{incP}, \epsilon_j^h, \epsilon_j^{ehi} \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4\} \times \{1, 2, 3, 4, 5\} \times \{0, 1\}$
- $\bullet \ \ \mathsf{Expectation} \Rightarrow \mathbb{E}_{\epsilon_{i+1}^{\mathit{incP}}, \epsilon_{i+1}^{\mathit{h}}, \epsilon_{i+1}^{\mathit{ehi}}, \epsilon_{i+1}^{\mathit{s}} | \epsilon_{i}^{\mathit{incP}}, \epsilon_{i}^{\mathit{h}}, \epsilon_{i}^{\mathit{ehi}}}$

$$V\left(\mathbf{x}_{j}\right) = \max_{\left\{c_{j},\ell_{j},\mathbf{x}_{j}\right\}} \left\{u\left(c_{j},\ell_{j}\right) + \beta \mathbb{E}\left[\underbrace{\frac{\mathsf{Health-longevity channel}}{\pi_{j}\left(h\left(\varepsilon_{j}^{h}\right)\right)}}_{\mathsf{Health-longevity channel}}V\left(\mathbf{x}_{j+1}\right) + \underbrace{\left(1 - \pi_{j}\left(h\left(\varepsilon_{j}^{h}\right)\right)\right)}_{\mathsf{U}^{\mathsf{beq}}\left(\mathsf{a}_{j+1}\right)}\right]\right\}$$

s.t.

$$a_{j+1} = \tilde{R}_{j+1} \left(\begin{array}{c} \underbrace{\text{Health-inc. channel}}_{a_j + y_j \left(\ell_j, \vartheta, \epsilon_j^{incP}, \epsilon_j^h\right) + \operatorname{tr}_j^{\operatorname{si}} - o_j \left(m_j, \epsilon_{j,\vartheta}^{\operatorname{ehi}}, y_j^{\operatorname{agi}}, a_j\right)} \\ -1_{\left[\epsilon_j^{\operatorname{ehi}} = 1\right]} \operatorname{prem}_j^{\operatorname{ehi}} \underbrace{-\operatorname{tax}_j}_{\text{Health-exp. channel}} - (1 + \tau^c) \, c_j - 1_{\left[\alpha_j > 0\right]} q \\ \underbrace{+ \operatorname{tax}_j}_{\text{Health-exp. channel}} - (1 + \tau^c) \, c_j - 1_{\left[\alpha_j > 0\right]} q \\ \underbrace{+ \operatorname{tax}_j}_{\text{Health-exp. channel}} - (1 + \tau^c) \, c_j - 1_{\left[\alpha_j > 0\right]} q \\ \underbrace{+ \operatorname{tax}_j}_{\text{Health-exp. channel}} - \underbrace{+ \operatorname{tax}_j}_{\text{Health-exp. channel}$$

Health-wealth porfolio channel

$$\tilde{R}_{j+1} = \alpha_{j} \left(1 + \bar{r}_{net,j+1}^{s} \left(\varepsilon_{j+1}^{s} \right) \right) + \left(1 - \alpha_{j} \right) \left(1 + \bar{r}_{net}^{b} \right)$$

$$\mathsf{tax}_{j} = \mathsf{tax}^{y} \left(y_{j}^{\mathsf{tax}} \right) + \mathsf{tax}^{\mathsf{ss}} \left(y_{j}^{\mathsf{ss}}; \ \bar{y}^{\mathsf{ss}} \right) + \mathsf{tax}^{\mathsf{mcare}} \left(y_{j}^{\mathsf{ss}} \right)$$

Retiree problem

- State vector: $x_j = \left\{ \vartheta, a_j, \epsilon_j^h \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4, 5\}$
- ullet Expectation $\Rightarrow \mathbb{E}_{\epsilon_{j+1}^h, \epsilon_{j+1}^s | \epsilon_j^h}$

$$V\left(\mathbf{x}_{j}\right) = \max_{\left\{c_{j},\alpha_{j}\right\}} \left\{ u\left(c_{j}\right) + \beta \mathbb{E}\left[\underbrace{\frac{\mathsf{Health-longevity channel}}{\pi_{j}\left(\mathbf{h}\left(\boldsymbol{e}_{j}^{h}\right)\right)}}_{\left(\mathbf{h}\left(\boldsymbol{e}_{j}^{h}\right)\right)} V\left(\mathbf{x}_{j+1}\right) + \underbrace{\left(1 - \pi_{j}\left(\mathbf{h}\left(\boldsymbol{e}_{j}^{h}\right)\right)\right)}_{\left(\mathbf{h}\left(\boldsymbol{e}_{j}^{h}\right)\right)} u^{\mathsf{beq}}\left(\mathbf{a}_{j+1}\right)\right] \right\}$$

s.t.

$$a_{j+1} = \tilde{R}_{j+1} \left(\begin{array}{c} \underbrace{a_j + \operatorname{tr}_j^{\operatorname{ss}} \left(\bar{y}^{\theta}\right) + \operatorname{tr}_j^{\operatorname{si}} - o_j \left(m_j, \varepsilon_{j,\theta}^{\operatorname{ehi}}, y_j^{\operatorname{agi}}, a_j\right)}_{\text{Healh-exp. channel}} \\ - \operatorname{prem}^{\operatorname{mcare}} \underbrace{-\operatorname{tax}^y \left(y_j^{\operatorname{tax}}\right)}_{\text{Healh-exp. channel}} - (1 + \tau^c) \, c_j - 1_{\left[\alpha_j > 0\right]} q \end{array} \right)$$

Health-wealth porfolio channel

$$\tilde{\textit{R}}_{j+1} = \alpha_{j} \left(1 + \tilde{\textit{r}}_{\textit{net},j+1}^{\textit{s}} \left(\epsilon_{j+1}^{\textit{s}} \right) \right) + \left(1 - \alpha_{j} \right) \left(1 + \bar{\textit{r}}_{\textit{net}}^{\textit{b}} \right)$$

More Details

Calibration

Parameterization and calibration

- Data sources:
 - RAND-HRS for asset profiles, initial asset distribution
 - MEPS: labor supply, health shocks, health expenditures, coinsurance rates
 - Previous studies: income process, labor shocks

Calibration target: risky asset participation rate

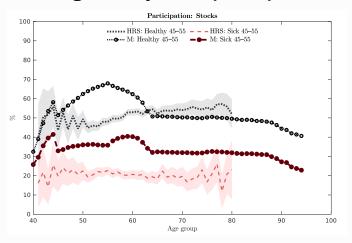
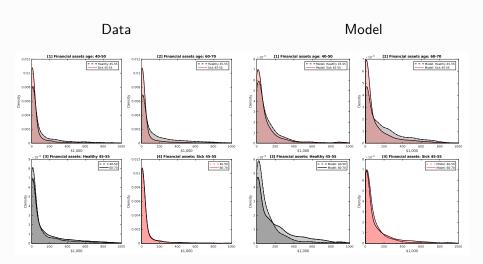



Figure 1: Calibration target: Stock participation

Bench. model: Dynamic shift of wealth (sick vs. healthy)

Bench. model: Risky assets by health at age 45-55

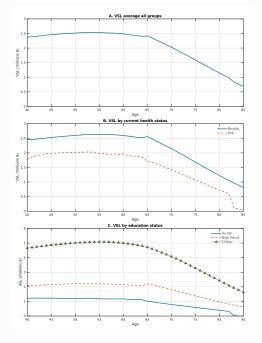
	Healthy at 45-55	Sick at 45-55
- Risky asset share α (at 65)	50%	31%
- Stock part. (at 40) - Stock part. (at 65)	32% 51%	26% 32%
- Wealth-to-inc (at 65)	5.07	3.29

Asset shares HRS vs. model data

	HRS		Mod	del
	Stock Share	P(Stocks)	Stock Share	P(Stocks)
Sick at 45 55	0.002	-0.221***	0.007***	-0.274***
_	(0.009)	(0.034)	(0.002)	(0.013)
Sick × Unemployed at 45 55	0.017	-Ò.126* [*]	-0.005**	0.206***
–	(0.015)	(0.050)	(0.002)	(0.014)
Sick × Uninsured at 45_55	0.028	Ò.109**	-0.005* [*] *	0.137***
	(0.017)	(0.053)	(0.002)	(0.014)
Unemployed at 45_55	0.008	-0.100***	0.005***	-0.338* [*] *
	(0.007)	(0.029)	(0.001)	(0.009)
Uninsured at 45_55	0.002	-0.352***	0.005***	-0.138* [*] *
	(0.007)	(0.027)	(0.001)	(0.009)
Age	0.005***	0.002	0.014***	-0.204***
· ·	(0.000)	(0.007)	(0.000)	(0.001)
Healthy	0.005	0.195***	0.043***	8.896***
•	(0.007)	(0.025)	(0.002)	(0.028)
Insured	-0.010	0.176***	-0.003*	0.659***
	(0.009)	(0.032)	(0.001)	(0.010)
High school degree	,	0.491***	,	0.260***
		(0.027)		(0.008)
College or higher	0.006	0.837***	-0.010***	1.371***
-	(0.006)	(0.033)	(0.001)	(0.016)
Income	-0.000	0.001***	0.088***	3.428***
	(0.000)	(0.000)	(0.003)	(0.040)
Assets	0.000**	0.001***	0.015***	13.842**
	(0.000)	(0.000)	(0.001)	(0.038)
Observations	24900		1440621	

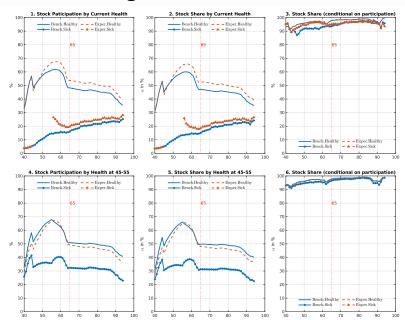
Quantitative Analysis

Counter factual: Benefits of good health


- Counterfactual
 - 1. Everybody draws good health (surprise shock)
 - 2. Everybody at age 45-55 draws good health
- · Policy functions are not affected!
- Calculate lifetime benefit/cost of good/bad health (annual averages) following De Nardi, Pashchenko and Porapakkarm (2022)

$$\overline{\mathsf{benefit}_i} = \left(\frac{1}{\sum_{j=1}^J 1_{\mathsf{alive}_j}}\right) \sum_{j=1}^J 1_{\mathsf{alive}_j} \times \left(\begin{array}{c} \mathsf{net of med expens.} \\ \mathsf{always healthy} \\ \hline (y_{ij}^{**} - oop_{ij}^{**}) \end{array} \right) - \underbrace{\left(\begin{array}{c} \mathsf{net of med expens.} \\ \mathsf{benchmark} \\ \hline (y_{ij}^* - oop_{ij}^*) \end{array}\right)}_{\mathsf{benefit}_j} = \left(\begin{array}{c} \mathsf{net of med expens.} \\ \mathsf{benchmark} \\ \hline (y_{ij}^* - oop_{ij}^*) \end{array}\right)$$

Counter factual: Benefits of good health


	All	Low	By skill level Medium	High
In good health between 45–55 • % of time in bad health eliminated • Medical cost ↓ + income ↑ • Welfare (CEV) • Welfare (CEV) – Single asset model	8.89% \$2,803 - -	12.62% \$3,839 +9.72% +9.68%	8.10% \$2,466 +8.11% +7.77%	5.64% \$2,178 +5.55% +5.20%
In good health between 40-death • % of time in bad health eliminated • Medical cost ↓ + income ↑ • Welfare (CEV) • Welfare (CEV) - Single asset model	16.49% \$7,107 -	23.26% \$9,442 +22.39% +22.37%	15.24% \$6,495 +18.09% +17.76%	10.15% \$5,349 +13.19% +12.85%

Notes: Good health conditions are defined as health states of excellent, very good and good. Skill types include: Low (No high school), Medium (High school) and High (College).

Good health at age 45-55

Counter factual: Health-wealth portfolio channel

- [A] 2 Asset Model
 - 1. Benchmark \Rightarrow Health shocks + portfolio choice
 - Remove bad health states (good health surprises)
 ⇒ NO health shocks + portfolio choice
- [B] Remove portfolio choice \Rightarrow single asset
 - 1. Health shocks + NO portfolio choice
 - NO health shocks + NO portfolio choice (Removes health-portfolio channel completely)

Counter factual: Results

	[A] Two assets economy		[B] Single asset	
	Health shocks	NO h.s.	Health shocks	NO h.s.
Stock participation • at 40: sick 45-55 • at 40: healthy 45-55	26%	NA	0%	0%
	32%	32%	0%	0%
• at 65: sick 45-55	32%	NA	0%	0%
• at 65: healthy 45-55	51%	56%	0%	0%
Assets Labor participation Hours (workers) Consumption	100	122.2	62.5	71.6
	48.6%	67.0%	49.2%	65.4%
	100	103.1	99.7	102.8
	100	105.2	98.0	101.7
Wealth-to-income (W/I) • W/I at 40: all • W/I at 65: all • W/I at 65: sick 45-55 • W/I at 65: healthy 45-55	1.31	1.31	1.37	1.37
	4.79	5.95	2.49	2.94
	3.46	5.95	1.90	2.94
	5.72	5.95	2.91	2.94

Counter factual: Wealth inequality

	[A] Two assets economy		[B] Single asset	
	Health shocks	NO h.s.	Health shocks	NO h.s.
Wealth inequality • P90/P50: all age	9.19	4.93 (↓46.3%)	7.09 (↓22.9%)	5.33 (\\daggeq42.0\%) (\\daggeq 24.8\%)
• P50/P25: all age	11.16	7.51 (↓32.7%)	6.99 (↓37%)	3.88 (↓65.2%) (↓ 44.5%)
P90/P50 at 65P50/P25 at 65	11.00 10.51	4.55 (↓58.6%) 6.16 (↓41.4.7%)	7.31 (\dagger33.6%) 6.99 (\dagger33.5%)	5.33 (\$\\$1.6%) (\$\\$27.1%) 2.92 (\$\\$72.2%) (\$\\$58.2%)
• Wealth Gini	0.67	0.71	0.67	0.69

Counter factual: Health insurance expansion

- [A.1] Benchmark: Employer-sponsored health insurance (EHI) for workers; Medicare fo retirees; Medicaid for the poor
- [A.5] Medicare for all expansion of Medicare for all workers and retirees
- [A.6] EHI for all workers expansion of EHI for all workers while maintaining Medicare and Medicaid

Health insurance expansion (Partial eqm.)

	[A.1] Benchmark	[A.5] Medicare for all	[A.6] EHI for all workers
Assets	100	104.0	103.2
Stock participation			
 At 65: sick 45-55 	32%	35%	35%
 At 65: healthy 45-55 	51%	54%	53%
Wealth gap			
 All age: P90/P50 	9.2	6.9 (↓ 24.5%)	7.3 (\pm 20.3%)
 All age: P50/P25 	11.2	$11.0 \ (\downarrow 1.1\%)$	10.4 (\(\psi 0.7\%)
• At 65: P90/P50	11.00	8.3 (25.0%)	8.7 (20.7%)
• At 65: P50/P25	10.8	5.7 (↓ 47.5%)	7.6 (29.7%)
Welfare (CEV)	0	+1.92	+1.90

Notes: [A.5] Medicare for all - expansion of Medicare for all workers and retirees; and [A.6] EHI for all workers - expansion of EHI for all workers while maintaining Medicare and Medicaid.

Policy experiments details

Conclusion

Conclusion

- Study dynamic effects of health shocks on savings, portfolio choice and wealth accumulation over lifecycle
- Empirical analysis
 - Use HRS panel data to investigate health shocks \Rightarrow savings portfolio
 - Dynamic (panel) regression models
- Structural model
 - Lifecycle model w/ savings (portfolio) decisions, health shocks and health insurance
 - Quantify long-run effects of bad health on portfolio choice and wealth gaps
 - Examine effects of health insurance reforms on wealth inequality at retirement

Future work

- Empirical analysis
 - Housing assets
 - Household structure
- Structural model
 - Structural estimation of lifecycle model
 - A full dynamic general equilibrium macro-health model
 - Endogenous health and medical spending

Thank you!

Supplementary material

Related literature I

- Lifecycle portfolio investment literature starting with Samuelson (1969); Merton (1971) and recent surveys in Gomes (2020) and Gomes, Haliassos and Ramadorai (2021)
- Health and wealth inequality
 - Medical expenditures and access to health insurance: De Nardi, French and Jones (2010); Nakajima and Telyukova (2022); Chen, Feng and Gu (2022); De Nardi, Pashchenko and Porapakkarm (2022)
 - Health on labor supply and productivity: Prados (2018); Capatina and Keane (2023); Hosseini, Kopecky and Zhao (2021)
 - Lifestyle behaviors: Mahler and Yum (2022)
- Wealth on proportion of risky assets has mixed results
 - positive effect: Wachter and Yogo (2010)
 - minor effect: Brunnermeier and Nagel (2008)
 - negative effect: Liu, Liu and Cai (2021)
- Additional channels
 - stock market entry/adjustment costs: Alan (2006); Bonaparte, Cooper and Zhu (2012); Fagereng, Gottlieb and Guiso (2017)
 - education: Cocco, Gomes and Maenhout (2005); Cooper and Zhu (2016)

Related literature II

- unemployment: Bagliano, Fugazza and Nicodano (2014); Bagliano, Fugazza and Nicodano (2019)
- household composition: Inkmann, Michaelides and Zhang (2022)
- demographics and composition of 401k: Egan, MacKay and Yang (2021)
- introduction of Pension Protection Act of 2006: Parker et al. (2022)
- longevity annuities: Zhou, Li and Zhou (2022)
- reverse mortgages: Nakajima and Telyukova (2017); Hambel, Kraft and Meyer-Wehmann (2022)
- cyclicality of skewness of income shocks: Catherine (2022)
- Estimated structural lifecycle models of portfolio choice and retirement: Yogo (2016); Fagereng, Gottlieb and Guiso (2017); Gomes and Smirnova (2021)
- Calibrated lifecycle models with liquidity costs of stocks and long-term bonds:
 Campanale, Fugazza and Gomes (2015) and Tischbirek (2019)
- Empirical lit. of health spending and health insurance on portfolio choice of elderly: Goldman and Maestas (2013); Ayyagari and He (2016)
 - Early life health status: Böckerman, Conlin and Svento (2021)
 - Current health status: Rosen and Wu (2004)
 - Subjective health status: Bressan, Pace and Pelizzon (2014)
 - Expected future health shocks: Edwards (2008)

Related literature III

Empirical financial literacy

- Cognitive abilities and investment decisions: Christelis, Jappelli and Padula (2010); Agarwal and Mazumder (2013); Gamble et al. (2015); Lindeboom and Melnychuk (2015); Mazzonna and Peracchi (2020); Shimizutani and Yamada (2020)
- Role of financial advising: Rossi and Utkus (2020, 2021)

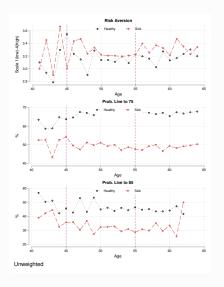
Back to literature

Health & Retirement Study (RAND-HRS) 1992–2018

- Health and Retirement Study (RAND-HRS) panel data survey
- The majority of them are between 51–61 years
- Limit sample to heads of households and age group of 40–80 with wealth info
- In regressions we use reduced sample of 60–70 year olds
- Variables: labor market behavior, educational attainment, family background, government program participation, family life, health issues, assets, and income

HRS summary statistics I

	(1) w/H.Info Age:40-80	(2) Sick 45-55 A:40-80	(3) Alive60-70 A:40-80	(4) All A:60-70	(5) w/H.Info A:60-70	(6) Sick 45-55 A:60-70	(7) HlimWrk A:60-70
Sick at 45_55	0.30	1.00	0.27	0.27	0.27	1.00	0.65
Health Limits Work at 45_55	0.27	0.62	0.25	0.24	0.24	0.60	1.00
Health Limits Work	0.30	0.58	0.30	0.33	0.33	0.63	0.71
Spouse: Health Limits Work	0.24	0.32	0.24	0.26	0.26	0.36	0.34
Unemployed at 45_55	0.30	0.56	0.28	0.27	0.27	0.53	0.67
Uninsured at 45_55	0.29	0.35	0.28	0.27	0.27	0.34	0.32
P(Stocks)	0.42	0.20	0.45	0.45	0.45	0.22	0.28
P(Safe Assets)	0.79	0.62	0.81	0.81	0.82	0.65	0.70
Risky Assets (\$1,000)	91.09	20.66	103.20	107.80	128.11	27.98	41.23
Safe Assets (\$1,000)	95.04	30.30	104.61	110.00	127.84	40.95	52.74
Risky Asset Share	0.18	0.09	0.20	0.19	0.20	0.09	0.12
Safe Asset Share	0.61	0.53	0.62	0.62	0.62	0.56	0.58
Debt (\$1,000)	7.03	7.26	6.68	5.27	5.83	5.31	5.70
Nortgage (\$1,000)	48.70	28.30	47.62	36.16	45.81	26.78	29.36
Other home loans (\$1,000)	4.42	1.99	4.74	3.73	4.82	2.33	3.32
ncome Risk Aversion	3.20	3.26	3.19	3.28	3.24	3.32	3.28
inancial planning horizon	3.13	2.86	3.13	3.05	3.09	2.80	2.89
Prob. live to 75	61.59	48.71	62.32	63.00	62.28	49.39	54.08
Prob. live to 85	41.46	30.98	41.62	42.82	42.48	30.72	34.42
Age	59.91	58.63	61.47	64.64	64.16	63.92	63.98
Female	0.30	0.38	0.28	0.33	0.28	0.38	0.38
Married/Partnered	0.58	0.47	0.59	0.57	0.59	0.45	0.46
Nr. Children Alive	2.90	3.14	2.96	3.18	2.99	3.27	3.14
Black	0.21	0.30	0.20	0.20	0.19	0.28	0.26
Hispanic	0.13	0.21	0.12	0.11	0.11	0.19	0.13
No high school degree	0.25	0.42	0.25	0.29	0.25	0.44	0.36


HRS summary statistics II

Observations	75526	22387	61107	56374	25686	6819	6261
Private health insurance	0.52	0.34	0.52	0.46	0.48	0.29	0.28
Public health insurance	0.31	0.46	0.33	0.42	0.40	0.59	0.62
Uninsured	0.16	0.19	0.15	0.12	0.12	0.12	0.10
Insured	0.84	0.81	0.85	0.88	0.88	0.88	0.90
Total OOP exp. HH (\$1,000)	5.00	5.39	5.22	5.37	5.68	5.68	5.47
OOP health exp. (\$1,000)	3.07	3.79	3.17	3.36	3.43	3.88	3.80
Smoker	0.22	0.31	0.21	0.19	0.18	0.24	0.24
Body Mass Index	28.92	30.44	28.77	28.47	28.97	30.48	29.98
Healthy	0.72	0.32	0.73	0.71	0.72	0.37	0.46
Initial Health Poor	0.07	0.24	0.07	0.08	0.07	0.25	0.23
Initial Health Fair	0.16	0.52	0.14	0.16	0.14	0.52	0.29
Initial Health Good	0.28	0.16	0.28	0.29	0.28	0.15	0.26
Initial Health Very Good	0.28	0.06	0.29	0.27	0.28	0.06	0.14
Initial Health Excellent	0.21	0.03	0.23	0.20	0.23	0.02	0.07
Health Poor	0.08	0.22	0.08	0.09	0.08	0.21	0.20
Health Fair	0.20	0.46	0.19	0.21	0.21	0.41	0.34
Health Good	0.31	0.23	0.31	0.32	0.33	0.27	0.30
Health Very Good	0.28	0.07	0.29	0.28	0.29	0.08	0.13
Health Excellent	0.12	0.02	0.12	0.11	0.10	0.02	0.04
Receives Social Security	0.72	0.76	0.84	0.90	0.88	0.91	0.93
Employed	0.52	0.36	0.48	0.32	0.37	0.21	0.17
Pre-govt HH income (\$1,000)	85.88	45.48	86.10	74.86	84.15	42.58	48.60
Labor income (\$1,000)	33.80	16.36	32.20	21.20	25.01	10.16	8.73
College or higher	0.24	0.10	0.24	0.22	0.25	0.10	0.13
High school degree	0.52	0.47	0.51	0.49	0.51	0.46	0.50

HRS summary statistics III

Back to HRS variable definitions

Preference/belief differences by type

Safe asset share

	(1)	(2)	(3)
Sick at 45_55	0.015*	0.008	0.008
	(0.009)	(0.010)	(0.012)
Sick \times Unemployed at 45_55	-0.050***	-0.049***	-0.045**
	(0.012)	(0.016)	(0.017)
Sick $ imes$ Uninsured at 45_55	-0.084***	-0.070***	-0.079***
	(0.012)	(0.017)	(0.017)
Observations	24900	24750	24900
R^2	0.057	0.049	
Conditional $P(Y>0)$	No	No	No
Random Effects	No	No	Yes
Weighted	No	Yes	No

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Preferences

Preferences

$$u\left(c_{j},\ell_{j};\bar{n}_{j}\right) = \frac{\left(\left(\frac{c_{j}}{\omega_{j,\theta}}\right)^{\eta} \times \left[\ell_{j} - 1_{[0 < n_{j}]} \times \bar{n}_{j}\right]^{1-\eta}\right)^{1-\sigma}}{1-\sigma} + \bar{u}$$

Warm-glow bequest

$$u^{\mathrm{beq}}\left(a_{j}\right) = \theta_{1} \frac{\left(a_{j} + \theta_{2}\right)^{\left(1 - \sigma\right)\eta}}{1 - \sigma}$$

Health

- Health:
 - 5 idiosyncratic (exogenous) health groups $\epsilon^h \in \{1, 2, 3, 4, 5\}$
 - Age dependent health expenditure $m(j, \vartheta, \varepsilon^h)$
 - Health state:

$$h\left(\epsilon^h\right) = \begin{cases} \text{healthy} & \text{if } \epsilon^h \in \{\text{excellent, very good, good}\}, \\ \text{sick} & \text{if } \epsilon^h \in \{\text{fair, poor}\}. \end{cases}$$

- \circ Survival probability: $\pi\left(h\left(arepsilon^{h}
 ight)
 ight)$
- Health and labor income shocks:

$$\Pr\left(\epsilon_{j+1}^{h}|\epsilon_{j}^{h}\right)\in\Pi^{h}\left(j,\vartheta\right)\text{ , }\Pr\left(\epsilon_{j+1}^{incP}|\epsilon_{j}^{incP}\right)\in\Pi_{j}^{incP}$$

Health insurance

Workers: exogenous employer HI

$$\epsilon_{j,\vartheta}^{\mathrm{ehi}} = \left\{ egin{array}{ll} 0 & ext{not privately insured,} \ 1 & ext{privately health insurance,} \end{array}
ight. ext{for } j \leq J_w$$

- $\epsilon_{j,\vartheta}^{\mathrm{ehi}}$ follows Markov process with $P\left(\epsilon_{j+1,\vartheta}^{\mathrm{ehi}}|\epsilon_{j,\vartheta}^{\mathrm{ehi}}\right)\in\Pi_{j,\vartheta}^{\mathrm{ehi}}$
- Coinsurance: $\gamma^{\rm ehi}$
- Premium: $prem_j^{Ins}$
- **Poor:** qualify for Medicaid w/ coinsurance $\gamma^{\rm maid}$ if $y_j^{\rm agi} < y^{\rm maid}$ and $a_j < a^{\rm maid}$
- Retired $j>J_1$ have Medicare w/ coinsurance $\gamma^{\rm mcare}$ and premium prem $^{\rm mcare}$

Out-of-pocket health spending

$$o_{j}\left(m_{j}, \epsilon_{j,\vartheta}^{\text{ehi}}, y_{j}^{\text{agi}}, a_{j}\right) = \\ = \begin{cases} \overbrace{1_{[\text{maid-yes}]} \gamma^{\text{maid}}}^{\text{primary HI}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right) & \text{if } \overbrace{\epsilon_{j,\vartheta}^{\text{ehi}} = 0 \ \land j \leq J_{w}}^{\text{working, no private HI}} \\ \overbrace{1_{[\text{maid-yes}]} \gamma^{\text{maid}}}^{\text{Medicaid is secondary HI}} \times \left(\overbrace{\gamma^{\text{ehi}}}^{\text{primary}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right)\right) & \text{if } \overbrace{\epsilon_{j,\vartheta}^{\text{ehi}} = 1 \ \land j \leq J_{w}}^{\text{ehi}} \\ \overbrace{1_{[\text{maid-yes}]} \gamma^{\text{maid}}}^{\text{Medicaid is secondary HI}} \left(\times \overbrace{\gamma^{\text{mcare}}}^{\text{primary}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right)\right) & \text{retired, with Medicare} \\ \overbrace{1_{[\text{maid-yes}]} \gamma^{\text{maid}}}^{\text{primary}} \left(\times \overbrace{\gamma^{\text{mcare}}}^{\text{primary}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right)\right) & \text{if } \overbrace{j > J_{w}}^{\text{primary}} \end{cases}$$

Labor income

- Profile by health type: $\bar{e}_{j} = \bar{e}\left(j,\vartheta,h\left(\epsilon^{h}\right)\right)$
- Exogenous income shock: $e_{j}\left(\vartheta,\epsilon^{h},\epsilon^{incP}\right)=\bar{e}_{j}\left(\vartheta,\,h\left(\epsilon^{h}\right)\right) imes\epsilon^{incP}$

Health-dependent income

• Labor income:
$$y_j\left(\ell_j, \vartheta, \epsilon_j^{incP}, \epsilon_j^h\right) = \widehat{w} \times e_j\left(\vartheta, \epsilon_j^{incP}, \epsilon^h\right) \times (1 - \ell_j)$$

Savings/Assets

- Two types of assets
 - risk-free bond $b \text{ w}/\text{ real return } r^b$
 - risky stock s w/ return $\tilde{r}^s = r^b + \mu^s + \epsilon^s$ and risk premium $\mu_s > 0$, stoch. return $\epsilon^s \sim N\left(0, \sigma_{\epsilon^s}^2\right)$
 - assume: $\tilde{r}^s = \frac{1+\tilde{g}+d}{1+\pi} 1$
- Net returns (see Gomes, Michaelides and Polkovnichenko, 2009)

$$\begin{split} & \bar{r}_{net}^b = \frac{1 + \left[\left(r^b + 1 \right) \left(1 + \pi \right) - 1 \right] \left(1 - \tau^d \right)}{1 + \pi} - 1 \\ & \tilde{r}_{net}^s = \frac{1 + \tilde{g} \left(\epsilon^s \right) \left(1 - \tau^g \right) + d \left(1 - \tau^d \right)}{1 + \pi} - 1 \end{split}$$

- W/ exogenous parameters
 - d, \tilde{g} : dividend vs. capital gains
 - τ^d , τ^g : dividend vs. capital gains tax
 - π inflation
- Borrowing limit $b_{i+1} \geq \underline{b}$, stock holdings $s_{i+1} \geq 0$
- Transaction cost q_{ϑ} when investing in risky asset

Taxes and transfers

Taxes

Labor income (Benabou 2002; Heathcote, Storesletten and Violante 2017)

$$ax^y(y_j^{ ax}) = \max\left[0, \, y_j^{ ax} - \lambda imes \left(y_j^{ ax}
ight)^{(1- au)}
ight]$$

- 0 < au < 1 progressivity
- λ scaling
- Payroll: $tax^{ss}\left(y_{j}^{ss}; \ \bar{y}^{ss}\right)$ and $tax^{mcare}\left(y_{j}^{ss}\right)$
- Consumption: τ^c
- Capital: au^d on dividends and au^g on capital gains

Transfers

- Social Security: trss
- Medicare, Medicaid
- Lump-sum transfers tr^{si} to guarantee c_{min}

Back to model overview

Worker Problem I

$$^{\bullet} \text{ State vec: } x_j = \left\{\vartheta, a_j, \epsilon_j^{\text{incP}}, \epsilon_j^{\text{h}}, \epsilon_j^{\text{ehi}}\right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4\} \times \{1, 2, 3, 4, 5\} \times \{0, 1\}$$

Worker Problem II

• Expectation $\Rightarrow \mathbb{E}_{\epsilon_{j+1}^{incP}, \epsilon_{j+1}^h, \epsilon_{j+1}^{ehi}, \epsilon_{j+1}^s | \epsilon_j^{incP}, \epsilon_j^h, \epsilon_j^{ehi}}$

$$V\left(x_{j}\right) = \max_{\left\{c_{j}, \ell_{j}, \alpha_{j}\right\}} \left\{u\left(c_{j}, \ell_{j}\right) + \beta \mathbb{E}\left[\underbrace{\frac{\mathsf{Health-longevity channel}}{\pi_{j}\left(\frac{h}{\left(\varepsilon_{j}^{h}\right)}\right)}}_{} V\left(x_{j+1}\right) + \underbrace{\left(1 - \pi_{j}\left(\frac{h}{\left(\varepsilon_{j}^{h}\right)}\right)\right)}_{} u^{\mathsf{beq}}\left(a_{j+1}\right) \right\} \left(\frac{h}{\left(\varepsilon_{j}^{h}\right)}\right) u^{\mathsf{beq}}\left(a_{j+1}\right) u^{\mathsf{$$

s.t.

$$a_{j+1} = \tilde{R}_{j+1} \left(\begin{array}{c} \text{Health income channel} \\ a_j + y_j \left(\ell_j, \vartheta, e_j^{incP}, e_j^h\right) + \operatorname{tr}_j^{\operatorname{si}} - o_j \left(m_j, e_{j,\vartheta}^{\operatorname{ehi}}, y_j^{\operatorname{agi}}, a_j\right) \\ -1_{\left[e_j^{\operatorname{ehi}} = 1\right]} \operatorname{prem}_j^{\operatorname{ehi}} - \operatorname{tax}_j - (1 + \tau^c) \, c_j - 1_{\left[\alpha_j > 0\right]} q \\ \text{Health-exp. channel} \end{array} \right)$$

Health-wealth portfolio channel

$$\begin{split} \tilde{R}_{j+1} &= \overline{\left(\alpha_{j}\left(1 + \bar{r}_{n\text{et},j+1}^{\text{s}}\right) + \left(1 - \alpha_{j}\right)\left(1 + \bar{r}^{\text{b}}\right)\right)} \\ \tan_{j} &= \tan^{y}\left(y_{j}^{\text{tax}}\right) + \tan^{\text{ss}}\left(y_{j}^{\text{ss}}; \ \bar{y}^{\text{ss}}\right) + \tan^{\text{mcare}}\left(y_{j}^{\text{ss}}\right) \\ \underline{b} &\leq b_{j+1}, \ 0 \leq s_{j+1} \end{split}$$

Worker Problem III

• Total taxable income y_j^{tax} and payroll tax eligible income y_j^{ss}

$$\begin{aligned} y_j^{\mathsf{tax}} &= y_j - \mathbf{1}_{[\mathsf{in}_{j+1} = 2]} \mathsf{prem}_j^{\mathsf{ehi}} \\ &- \mathsf{max} \left[0, \ o_j \left(m_j, \epsilon_{j,\vartheta}^{\mathsf{ehi}}, y_j^{\mathsf{agi}}, a_j \right) - 0.075 \times \left(y_j + r_b \times b_j + r_s \times s_j \right) \right] \end{aligned}$$

$$y_j^{ss} = y_j - 1_{[\mathsf{in}_{j+1}=2]}\mathsf{prem}_j^{\mathsf{ehi}}$$

Taxes

$$\begin{aligned} & {\rm tax}_j = {\rm tax}^y\left(y_j^{\rm tax}\right) + {\rm tax}^{\rm ss}\left(y_j^{\rm ss};\;\bar{y}^{\rm ss}\right) + {\rm tax}^{\rm mcare}\left(y_j^{\rm ss}\right) \\ & {\rm tax}^{\rm ss}\left(y_j^{\rm ss};\;\bar{y}^{\rm ss}\right) = \tau^{\rm ss} \times \min\left[y_j^{\rm ss};\;\bar{y}^{\rm ss}\right] \\ & {\rm tax}^{\rm mcare}\left(y_j^{\rm ss}\right) = \tau^{\rm mcare} \times y_j^{\rm ss} \end{aligned}$$

Worker Problem IV

Transfers

$$ext{tr}_{j}^{ ext{si}} = ext{max} \left[0, \ c_{ ext{min}} + o\left(m_{j}
ight) - y_{j}^{ ext{at}} - a_{j}
ight] \ y_{j}^{ ext{at}} = y_{j} - ext{tax}_{j}$$

Average past labor earnings:

$$\bar{y}^{\vartheta} = \int_{j \leq J_r} w \times e(x) \times n(x) d\Lambda(x_j(\vartheta))$$

Back to worker problem

Retiree's Dynamic Optimization Problem I

- State vector: $x_j = \left\{ \vartheta, a_j, \frac{\epsilon_j^h}{\epsilon_j^h} \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4, 5\}$
- Expectation $\Rightarrow \mathbb{E}_{\epsilon_{i+1}^h, \epsilon_{i+1}^s | \epsilon_i^h}$

$$V\left(x_{j}\right) = \max_{\left\{c_{j}, \alpha_{j}\right\}} \left\{u\left(c_{j}\right) + \beta \mathbb{E}\left[\underbrace{\frac{\mathsf{Health-longevity channel}}{\pi_{j}\left(h\left(\varepsilon_{j}^{h}\right)\right)}} V\left(x_{j+1}\right) + \underbrace{\left(1 - \pi_{j}\left(h\left(\varepsilon_{j}^{h}\right)\right)\right)}_{\mathsf{Health-longevity channel}} u^{\mathsf{beq}}\left(a_{j+1}\right)\right]\right\}$$

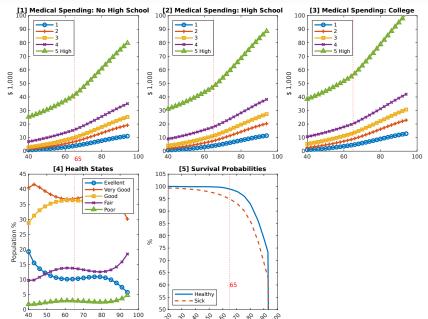
s.t.

$$a_{j+1} = \tilde{R}_{j+1} \left(\begin{array}{c} & \text{Health-expenditure channel} \\ a_j + \operatorname{tr}_j^{\operatorname{ss}} \left(\tilde{y}^{\vartheta} \right) + \operatorname{tr}_j^{\operatorname{si}} - \underbrace{o_j \left(m_j, \varepsilon_{j,\vartheta}^{\operatorname{ehi}}, y_j^{\operatorname{agi}}, a_j \right)}_{\text{Gradientiforms}} \\ - \operatorname{prem}_j^{\operatorname{mcare}} \underbrace{-\operatorname{tax}^y \left(y_j^{\operatorname{tax}} \right)}_{\text{Health-exp. channel}} - (1 + \tau^c) \, c_j - 1_{\left[\alpha_j > 0\right]} q \end{array} \right)$$

Health-wealth portfolio channel

$$\tilde{R}_{j+1} = \left(\alpha_j \left(1 + \tilde{r}_{net,j+1}^s \right) + \left(1 - \alpha_j \right) \left(1 + \tilde{r}^b \right) \right) \\
\underline{b} \le b_{j+1} \\
0 \le s_{j+1}$$

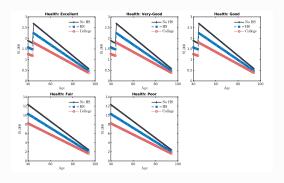
Retiree's Dynamic Optimization Problem II


$$\begin{aligned} y_{j}^{\mathsf{tax}} &= \mathsf{tr}_{j}^{\mathsf{ss}} - \mathsf{max}\left[0, \; \left(o_{j}\left(m_{j}\right) + \mathsf{prem}^{\mathsf{mcare}}\right) - 0.075 \times \left(r_{b} \times b_{j} + r_{\mathsf{s}} \times s_{j} + \mathsf{tr}_{j}^{\mathsf{ss}}\right)\right] \\ \mathsf{tr}_{j}^{\mathsf{si}} &= \mathsf{max}\left[0, \; c_{\mathsf{min}} + o_{j}\left(m_{j}\right) + \mathsf{prem}^{\mathsf{mcare}} + \mathsf{tax}^{y}\left(y_{j}^{\mathsf{tax}}\right) - a_{j} - \mathsf{tr}_{j}^{\mathsf{ss}}\right] \end{aligned}$$

Back to retired problem

Exogenous parameters

Downston downston	Parameter values	Same
Parameter description	Parameter values	Source
Periods	J = 55	
Work periods	$J_{W} = 25$	Age 40-64
Years modeled	years = 55	Age 40-94
Relative risk aversion	$\sigma = 3$	Standard values between $2.5 - 3.5$
Survival probabilities	$\pi_{j}\left(h\left(\epsilon^{h} ight) ight)$ see online appendix	İmrohoroğlu and Kitao (2012)
Health Shocks	ϵ_i^h see online appendix	MEPS 1996-2018
Health transition prob.	Π_i^h see online appendix	MEPS 1996-2018
Persistent labor shock autocor.	$\rho = 0.977$	French (2005)
Risk premium	$\mu = 0.04$	Mehra and Prescott (1985)
Risk free rate	$r^b = 0.02$	McGrattan and Prescott (2000)
Variance of transitory labor shock	$\sigma_{\epsilon_1}^2 = 0.0141$	French (2005)
Bias adjusted wage profile	$\bar{e}_j \left(\vartheta, h\left(\epsilon^h\right)\right)$ see online appendix	MEPS 1996-2018
Private employer HI	$\gamma^{ehi} = 0.31$	MEPS 1996-2018
Medicaid coinsurance	$\gamma^{maid} = 0.11$	MEPS 1996-2018
Medicare coinsurance	$\gamma^{mcare} = 0.30$	MEPS 1996-2018
Consumption tax	$\tau^c = 5\%$	IRS
Bequest parameter	$\theta_2 = \$500,000$	De Nardi (2004); French (2005)
Payroll tax Social Security	$ au^{\rm ss} = 10.6\%$	IRS
Payroll tax Medicare	$\tau_{.}^{mcare} = 2.9\%$	SSA (2007)
Tax progressivity	$\tau_{1}^{\prime} = 0.053$	Guner, Lopez-Daneri and Ventura (2016)
Dividend tax	$\tau^d = 25\%$	Gomes, Michaelides and Polkovnichenko (2009)
Capital gains tax	$\tau^{g} = 20\%$	Gomes, Michaelides and Polkovnichenko (2009)
Dividend yield	d = 3.2%	Gomes, Michaelides and Polkovnichenko (2009)
Inflation	$\pi^{i} = 2.8\%$	Gomes, Michaelides and Polkovnichenko (2009)


Exogenous health status

Internal (calibrated) parameters

Parameters	Values	Calibration target	Model	Data	Source
Discount factor Fixed cost of work Pref. cons. vs. leis.	$\beta = 0.99$ $\bar{n}_{j,\theta}$ $\eta = 0.275$	Wealth-to-inc.65 Avge. work part. Avge. hrs workers	4.79 Pan.2,Fig.2 Pan.3,Fig.2	4.6 Pan.2,Fig.2 Pan.3,Fig.2	HRS 1992–2018 MEPS 1996–2018 MEPS 1996–2018
Inv. cost stocks	$q_{artheta,j} \in \left[\overline{q_{artheta}}, ar{q}_{artheta} ight]$	Risky asset part.	Fig. 1	Fig. 1	HRS 1992-2018
Utility constant Prog. tax scaling	$\bar{u} = 10$ $\tau_0^i = 1.016$	VSL of workers	2.5 mill.\$	1-16 mill.\$	Viscusi (1993) Jung and Tran (2022)
Bequest parameter	θ_1	Asset hold. 90-94	Pan.4,Fig.2	Pan.4,Fig.2	HRS 1992-2018
Medicaid asset test	$\bar{a}^{maid} = \$75k$	Age 40-64 on Maid	Pan.2,Fig.3	Pan.2,Fig.3	MEPS 1996-2018
Medicaid income test Consumption floor	$\bar{y}^{maid} = \$5.5k$ $c_{min} = \$3.2k$	Age 20–39 on Maid Frac. net-ass.<\$5k	Pan.2,Fig.3 20% (of popul.)	Pan.2,Fig.3 20%	MEPS 1996–2018 Jeske and Kitao (2009)

Stock investment participation costs

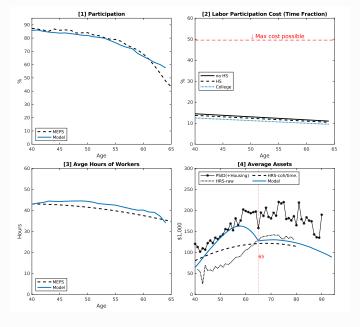


Figure 2: Calibration targets

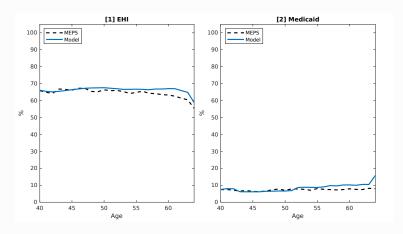


Figure 3: Calibration targets (only Medicaid is a target)

Back to calibration

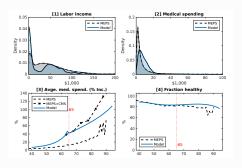


Figure 4: Model performance (not calibration targets)

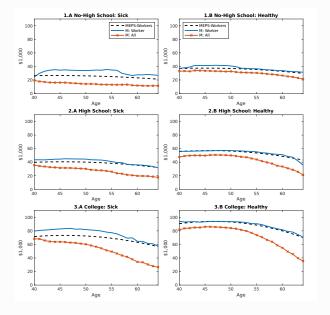


Figure 5: Model performance: labor income by education and health

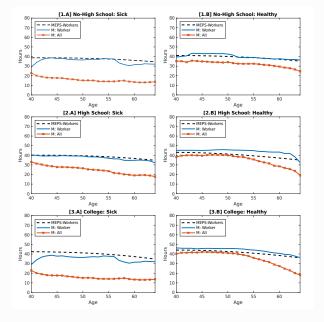


Figure 6: Model performance: hours worked by education and health

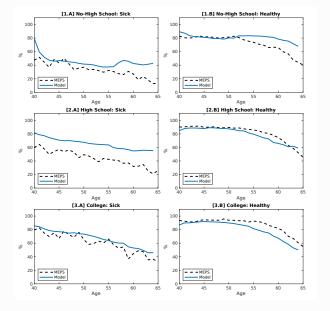


Figure 7: Model performance: labor force participation by education and health

Model performance (not targets)

Moments	Model	Data	Sources
Medical exp/income Gini medical spending Gini gross income Gini labor income Gini assets Frisch labor supply elasticities Interest rate: r Wealth: P90/P50 at 65	16.5%	see Figure	MEPS 1996–2018
	0.56	0.60	MEPS 1996–2018
	0.40	0.46	MEPS 1996–2018
	0.55	0.54	MEPS 1996–2018
	0.67	0.69	HRS 1992–2018
	1.19–1.51	1.1–1.7	Fiorito and Zanella (2012)
	5.9%	5.2 – 5.9%	Gomme, Ravikumar and Rupert (2011)
	9.01	15.4	HRS 1992–2018

Back to calibration

Value of statistical life I

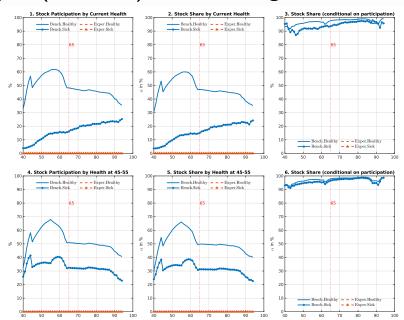
- The VSL is the monetary value corresponding to reduction in mortality risk that prevents one statistical death
- Follow Aldy and Smyth (2014)
 - Consider small increase in surv. probability $\Delta\pi_{j}\left(\varepsilon_{j}^{h}\right)$ so that surv. prob. is $\pi_{j}\left(\varepsilon_{j}^{h}\right)+\Delta\pi_{j}\left(\varepsilon_{j}^{h}\right)$
 - Using this new surv. prob. solve HH with otherwise identical paras $\Rightarrow V^* \left(\vartheta, a_{j_i}, \epsilon_j^{\text{incP}}, \epsilon_j^h, \epsilon_j^{\text{ehi}} \right)$
 - Search additional wealth Δa_i so that

$$V\left(\vartheta, a_{j} + \Delta a_{j}, \epsilon_{j}^{\mathsf{incP}}, \epsilon_{j}^{h}, \epsilon_{j}^{\mathsf{ehi}}\right) = V^{*}\left(\vartheta, a_{j}, \epsilon_{j}^{\mathsf{incP}}, \epsilon_{j}^{h}, \epsilon_{j}^{\mathsf{ehi}}\right)$$

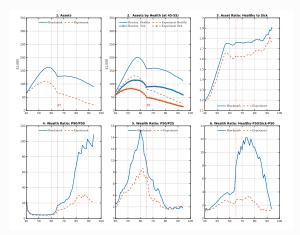
Calculate VSL as

$$\mathsf{VSL}_{j}\left(\vartheta, \mathsf{a}_{j}, \epsilon_{j}^{\mathsf{incP}}, \epsilon_{j}^{h}, \epsilon_{j}^{\mathsf{ehi}}\right) = \frac{\Delta \mathsf{a}_{j}}{\Delta \pi_{j}\left(\epsilon_{j}^{h}\right)}.$$

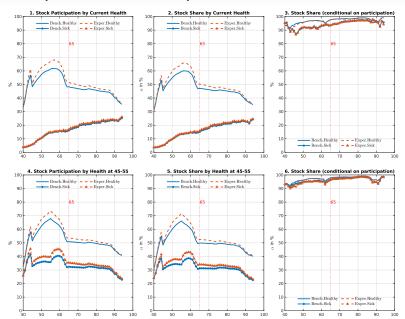
Value of statistical life II

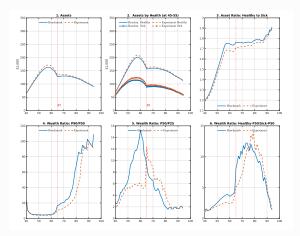

- Intuitively, the VSL is the marginal rate of substitution between wealth and survival probability
- VSL range between 1–16 million USD according to a survey by Viscusi (1993)
- We target 2.5 million USD for the working age population of 40–65 year olds

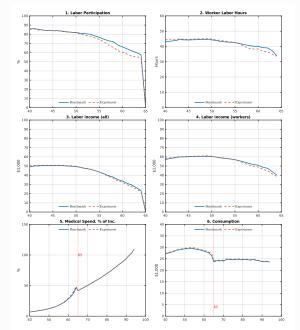
Back to VSL

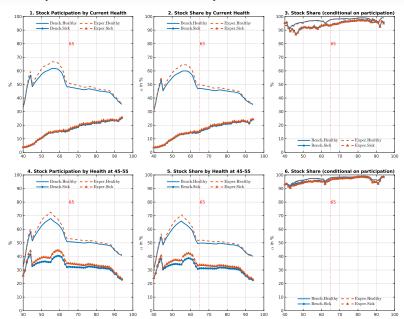

Policy experiments

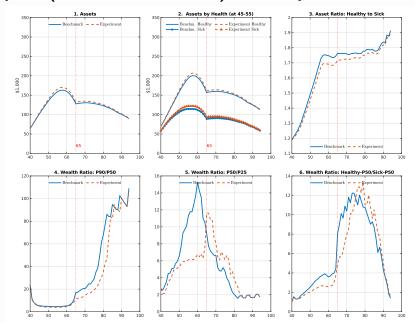
- Expansion of Medicare to 20–64 year olds (UPHI)
- Expansion of EHI to all workers
- Medicare buy in for 55–64 year olds
- Expansion of Medicaid
- No insurance world

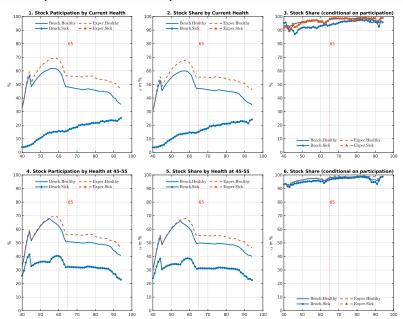

Exp. 1 (No stocks): Stock holdings

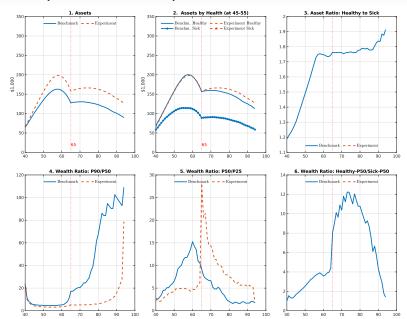

Exp. 1 (No stocks): Asset profiles

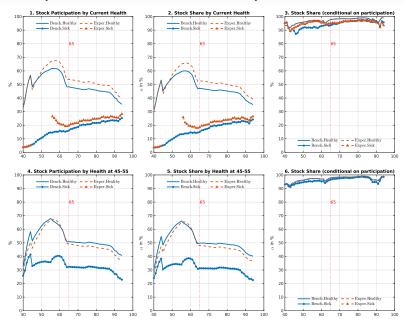

Exp. 2 (Medicare for all): Stock holdings

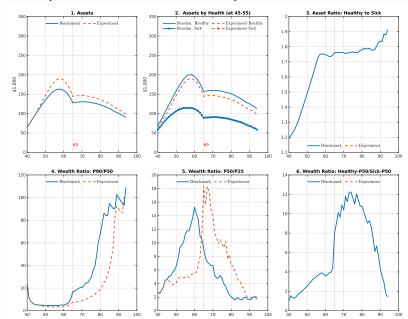

Exp. 2 (Medicare for all): Asset profiles

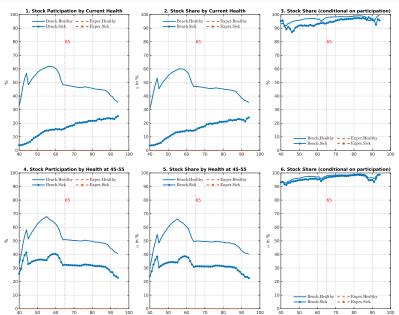

Exp. 2 (Medicare for all): Labor profiles

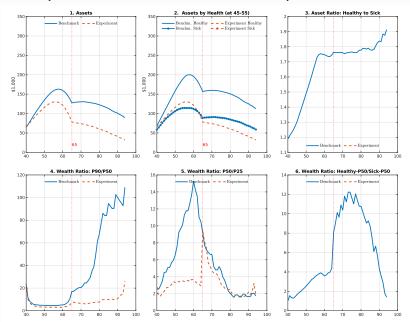

Exp. 4 (EHI for all workers): Stock holdings


Exp. 4 (EHI for all workers): Asset profiles


Exp. 7 (no bad health): Stock holdings


Exp. 7 (no bad health): Asset profiles


Exp. 8 (no bad health at 45-55): Stock holdings


Exp. 8 (no bad health 45-55): Asset profiles

Exp. 9 (no bad health + no stocks): Stock holdings

Exp. 9 (no bad health + no stocks): Asset profiles

Experiments done

Back to results

References I

- Agarwal, Sumit and Bhashkar Mazumder. 2013. "Cognitive Abilities and Household Financial Decision Making." American Economic Journal: Applied Economics 5(1):193–207.
- Alan, Sule. 2006. "Entry costs and stock market participation over the life cycle." Review of Economic Dynamics 9(4):588-611.
- Aldy, Joseph E. and Seamus J. Smyth. 2014. Heterogeneity in the Value of Life. Nber working Paper no. 20206.
- Ayyagari, Padmaja and Daifeng He. 2016. "Medicare Part D and Portfolio Choice." *The American Economic Review* 106(5):339–342.
- Bagliano, Fabio C., Carolina Fugazza and Giovanna Nicodano. 2014. "Optimal Life-Cycle Portfolios for Heterogeneous Workers." Review of Finance 18(6):2283–2323.
- Bagliano, Fabio C., Carolina Fugazza and Giovanna Nicodano. 2019. "Life-Cycle Portfolios, Unemployment and Human Capital Loss." *Journal of Macroeconomics* 60:325–340.
- Benabou, Roland. 2002. "Tax and Education Policy in a Heterogeneous Agent Economy: What Levels of Redistribution Maximize Growth and Efficiency?" Econometrica 70(2):481–517.
- Benhabib, Jess, Alberto Bisin and Mi Luo. 2019. "Wealth Distribution and Social Mobility in the US: A Quantitative Approach." American Economic Review 109(5):1623–1647.
- Benhabib, Jess, Alberto Bisin and Shenghao Zhu. 2015. "The Wealth Distribution in Bewley Models with Capital Income Risk." Journal of Economic Theory 159:459–515.
- Böckerman, Petri, Andrew Conlin and Rauli Svento. 2021. "Early Health, Risk Aversion and Stock Market Participation." Journal of Behavioral and Experimental Finance 32:100568.
- Bonaparte, Yosef, Russell Cooper and Guozhong Zhu. 2012. "Consumption smoothing and portfolio rebalancing: The effects of adjustment costs." *Journal of Monetary Economics* 59(8):751–768.
- Bressan, Silvia, Noemi Pace and Loriana Pelizzon. 2014. "Health Status and Portfolio Choice: Is Their Relationship Economically Relevant?" International Review of Financial Analysis 32:109–122.
- Brunnermeier, Markus K. and Stefan Nagel. 2008. "Do Wealth Fluctuations Generate Time-Varying Risk Aversion? Micro-evidence on Individuals." *American Economic Review* 98(3):713–736.

References II

- Campanale, Claudio, Carolina Fugazza and Francisco Gomes. 2015. "Life-Cycle Portfolio Choice with Liquid and Illiquid Financial Assets." Journal of Monetary Economics 71:67–83.
- Capatina, Elena. 2015. "Life-cycle Effects of Health Risk." Journal of Monetary Economics 74:67-88.
- Capatina, Elena and Michael Keane. 2023. "Health Shocks, Health Insurance, Human Capital, and the Dynamics of Earnings and Health.".
- Catherine, Sylvain. 2022. "Countercyclical Labor Income Risk and Portfolio Choices over the Life Cycle." The Review of Financial Studies 35(9):4016–4054.
- Chen, Chaoran, Zhigang Feng and Jiaying Gu. 2022. "Health, Health Insurance, and Inequality." Working Paper.
- Christelis, Dimitris, Tullio Jappelli and Mario Padula. 2010. "Cognitive abilities and portfolio choice." European Economic Review 54(1):18–38.
- Cocco, João F., Francisco J. Gomes and Pascal J. Maenhout. 2005. "Consumption and Portfolio Choice over the Life Cycle." The Review of Financial Studies 18(2):491–533.
- Cooper, Russell and Guozhong Zhu. 2016. "Household Finance Over the Life-Cycle: What Does Education Contribute?" Review of Economic Dynamics 20:63–89.
- De Nardi, Mariacristina. 2004. "Wealth Inequality and Intergenerational Links." Review of Economic Studies 71:743-768.
- De Nardi, Mariacristina, Eric French and B. John Jones. 2010. "Why Do the Elderly Save? The Role of Medical Expenses." Journal of Political Economy 118(1):39–75.
- De Nardi, Mariacristina, Svetlana Pashchenko and Ponpoje Porapakkarm. 2022. "The Lifetime Costs of Bad Health." NBER Working Paper No. 23963.
- Edwards, Ryan D. 2008. "Health Risk and Portfolio Choice." Journal of Business & Economic Statistics 26(4):472-485.
- Egan, Mark L., Alexander MacKay and Hanbin Yang. 2021. "What Drives Variation in Investor Portfolios? Evidence from Retirement Plans." NBER Working Paper No. 29604.
- Fagereng, Andreas, Charles Gottlieb and Luigi Guiso. 2017. "Asset Market Participation and Portfolio Choice over the Life-Cycle." The Journal of Finance 72(2):705–750.

References III

- Fiorito, Riccardo and Giulio Zanella. 2012. "The Anatomy of the Aggregate Labor Supply Elasticity." Review of Economic Dynamics 15(2):171–187.
- French, Eric. 2005. "The Effects of Health, Wealth, and Wages on Labour Supply and Retirement Behaviour." The Review of Economic Studies 72(2):395–427.
- Gabaix, Xavier, Jean-Michel Lasry, Pierre-Louis Lions and Benjamin Moll. 2016. "The Dynamics of Inequality." *Econometrica* 84(6):2071–2111.
- Gamble, Keith Jacks, Patricia Boyle, Lei Yu and David Bennett. 2015. "Aging and Financial Decision Making." *Management Science* 61(11):2603–2610.
- Goldman, Dana and Nicole Maestas. 2013. "Medical Expenditure Risk and Household Portfolio Choice." Journal of Applied Econometrics 28(4):527–550.
- Gomes, Francisco. 2020. "Portfolio Choice Over the Life Cycle: A Survey." Annual Review of Financial Economics 12(1):277–304.
- Gomes, Francisco, Alexander Michaelides and Valery Polkovnichenko. 2009. "Optimal savings with taxable and tax-deferred accounts." Review of Economic Dynamics 12(4):718–735.
- Gomes, Francisco, Michael Haliassos and Tarun Ramadorai. 2021. "Household Finance." Journal of Economic Literature 59(3):919–1000.
- Gomes, Francisco and Oksana Smirnova. 2021. "Stock Market Participation and Portfolio Shares Over the Life-Cycle." SSRN Working Paper No. 3808350.
- Gomme, Paul, B. Ravikumar and Peter Rupert. 2011. "The return to capital and the business cycle." Review of Economic Dynamics 14(2):262–278.
- Guner, Nezih, Martin Lopez-Daneri and Gustavo Ventura. 2016. "Heterogeneity and Government Revenues: Higher Taxes at the Top?" Journal of Monetary Economics 80:69–85.
- Hambel, Christoph, Holger Kraft and André Meyer-Wehmann. 2022. "When Should Retirees Tap Their Home Equity?" SSRN Working Paper No. 3681834.

References IV

- Heathcote, Jonathan, Kjetil Storesletten and Giovanni L Violante. 2017. "Optimal Tax Progressivity: An Analytical Framework." Quarterly Journal of Economics 132(4):1693–1754.
- Hosseini, Roozbeh, Karen Kopecky and Kai Zhao. 2021. "How Important Is Health Inequality for Lifetime Earnings Inequality?" Working Paper.
- Hugonnier, J. P. St-Amour and F. Pelgrin. 2013. "Health and (other) Asset Holdings." Review of Economic Studies 80(2):663–710.
- İmrohoroğlu, Selahattin and Sagiri Kitao. 2012. "Social Security Reforms: Benefit Claiming, Labor Force Participation, and Long-run Sustainability." *American Economic Journal: Macroeconomics* 4(3):96–127.
- Inkmann, Joachim, Alexander Michaelides and Yuxin Zhang. 2022. "Family Portfolio Choice over the Life Cycle." SSRN Working Paper No. 3965481.
- Jeske, Karsten and Sagiri Kitao. 2009. "U.S. Tax Policy and Health Insurance Demand: Can a Regressive Policy Improve Welfare?" Journal of Monetary Economics 56(2):210–221.
- Jung, Juergen and Chung Tran. 2016. "Market Inefficiency, Insurance Mandate and Welfare: U.S. Health Care Reform 2010." Review of Economic Dynamics 20:132–159.
- Jung, Juergen and Chung Tran. 2022. "Social Health Insurance: A Quantitative Exploration." Journal of Economic Dynamics and Control 139:104374.
- Jung, Juergen and Chung Tran. 2023. "Health Risk, Insurance and Optimal Progressive Income Taxation." Journal of the European Economic Association forthcoming.
- Lindeboom, Maarten and Mariya Melnychuk. 2015. "Mental Health and Asset Choices." Annals of Economics and Statistics (119/120):65–94.
- Liu, Xuan, Haiyong Liu and Zongwu Cai. 2021. "Time-Varying Relative Risk Aversion: Mechanisms and Evidence." SSRN Electronic Journal.
- Lusardi, Annamaria, Pierre-Carl Michaud and Olivia S. Mitchell. 2017. "Optimal Financial Knowledge and Wealth Inequality." Journal of Political Economy 125(2):431–477.

References V

- Mahler, Lukas and Minchul Yum. 2022. "Lifestyle Behaviors and Wealth-Health Gaps in Germany." Working Paper .
- Mazzonna, Fabrizio and Franco Peracchi. 2020. "Are Older People Aware of Their Cognitive Decline? Misperception and Financial Decision Making." IZA Discussion Paper No. 13725.
- McGrattan, Ellen R. and Edward C. Prescott. 2000. "Is the stock market overvalues?" Quarterly Review, Federal Reserve Bank of Minneapolis 24:20–40.
- Mehra, Rajnish and Edward C. Prescott. 1985. "The equity premium: A puzzle." Journal of Monetary Economics 15(2):145-161.
- Merton, Robert C. 1971. "Optimum consumption and portfolio rules in a continuous-time model." Journal of Economic Theory 3(4):373–413.
- Nakajima, Makoto and Irina A. Telyukova. 2017. "Reverse Mortgage Loans: A Quantitative Analysis." The Journal of Finance 72(2):911–950.
- Nakajima, Makoto and Irina A. Telyukova. 2022. "Medical Expenses and Saving in Retirement: The Case of U.S. and Sweden." Federal Reserve Bank of Minneapolis, Opportunity & Inclusive Growth Institute, Wortking Paper 8.
- Parker, Jonathan A., Antoinette Schoar, Allison T. Cole and Duncan Simester. 2022. "Household Portfolios and Retirement Saving over the Life Cycle." NBER Working Paper No. 29881.
- Prados, María José. 2018. "Health and Earnings Inequality Over the Life Cycle: The Redistributive Potential of Health Policies." Working Paper, USC Dornsife (Dissertation Paper, Dept. of Economics, Columbia University).
- Rosen, Harvey S and Stephen Wu. 2004. "Portfolio Choice and Health Status." Journal of Financial Economics 72(3):457-484.
- Rossi, Alberto G. and Stephen P. Utkus. 2021. "Who Benefits from Robo-advising? Evidence from Machine Learning." SSRN 3552671.
- Rossi, Alberto G. and Stephen Utkus. 2020. "The Needs and Wants in Financial Advice: Human versus Robo-advising." Working Paper.
- Samuelson, Paul A. 1969. "Lifetime Portfolio Selection By Dynamic Stochastic Programming." The Review of Economics and Statistics 51(3):239–246.

References VI

- Shimizutani, Satoshi and Hiroyuki Yamada. 2020. "Financial Literacy of Middle-Aged and Older Individuals: Comparison of Japan and the United States." The Journal of the Economics of Ageing 16:100214.
- SSA, 2007, "Social Security Update 2007," SSA Publication No. 05-10003.
- Tischbirek, Andreas. 2019. "Long-Term Government Debt and Household Portfolio Composition." Quantitative Economics 10(3):1109–1151.
- Viscusi, Kip W. 1993. "The Value of Risks to Life and Health." Journal of Economic Literature 31(4):1912-1946.
- Wachter, Jessica A. and Motohiro Yogo. 2010. "Why Do Household Portfolio Shares Rise in Wealth?" The Review of Financial Studies 23(11):3929–3965.
- Yogo, Motohiro. 2016. "Portfolio Choice in Retirement: Health Risk and the Demand for Annuities, Housing and Risky Assets." Journal of Monetary Economics 80:17–34.
- Zhou, Rui, Johnny Siu-Hang Li and Kenneth Zhou. 2022. "The Role of Longevity Annuities in Different Socioeconomic Classes: A Canadian Case Study." SSRN 4156290.