

ECON 202 - MACROECONOMIC PRINCIPLES Instructor: Dr. Juergen Jung Towson University

Disclaimer

These lecture notes are customized for the Macroeconomics Principles 202 course at Towson University. They are not guaranteed to be error-free. Comments and corrections are greatly appreciated. They are derived from the Powerpoint[®] slides from online resources provided by Pearson Addison-Wesley. The URL is: http://www.pearsonhighered.com/osullivan/

These lecture notes are meant as complement to the textbook and not a substitute. They are created for pedagogical purposes to provide a link to the textbook. These notes can be distributed with prior permission.

This version was compiled on: October 26, 2016.

Chapter 11 - The Income-Expenditure Model

- 1 Discuss the income-expenditure model
- 2 Identify the two key components of the consumption function
- 3 Calculate equilibrium income in a simple model
- 4 Explain how government spending and taxes affect equilibrium income
- **5** Discuss the role of exports and imports in determining equilibrium income
- **6** Explain how the aggregate demand curve is related to the income-expenditure model

Income Expenditure Model

At any point on the 45 degree line, the distance to the horizontal axis is the same as the distance to the vertical axis

Equilibrium Output

Adjustment to Equilibrium Output

Consumption Function

The Consumption Function

The consumption function shows the relationship between desired spending and the level of income

$$C = C_a + b \times y$$

The Consumption Function

Changes in the Consumption Function

Equilibrium Output and the Consumption Function in a Closed Economy

Formula for Equilibrium Output

• output=planned expenditures $\rightarrow y = C + I$

•
$$C = (C_a + b \times y)$$
, so that

•
$$y = (C_a + b \times y) + I$$
. Rearranging

Savings and Investment

Savings and Investment in a Closed Economy without a Government

Savings equals output minus consumption

$$S = y - C$$

$$\rightarrow S = I$$

Investment Divided into 3 Components

Remember that with a foreign sector (open economy) and a government we had:

$$I = S + (T - G) + (Im - Ex),$$

Understanding the Multiplier

Multiplier for Investment

• For the original level of investment at I_0 we have

$$y_0 = \frac{C_a + I_0}{1 - b}$$

• For the new level of investment I_1 we have

$$y_1 = \frac{C_a + l_1}{1 - b}$$

The difference in output is then

$$\begin{array}{rcl} \Delta y & = & y_1 - y_0, \\ \rightarrow & \Delta y = & \displaystyle \frac{C_a + l_1}{1 - b} - \displaystyle \frac{C_a + l_0}{1 - b}, \\ \rightarrow & \Delta y = & \displaystyle \frac{l_1 - l_0}{1 - b}, \\ \rightarrow & \Delta y = & \displaystyle \frac{1}{1 - b} \Delta l, \end{array}$$

Alternative Derivation of Multiplier

•
$$\Delta y = \$1 + (\$1 \times b) + (\$1 \times b^2) + (\$1 \times b^3) + \dots$$
 or
• $\Delta y = \$1 \times (1 + b + b^2 + b^3 + \dots)$

This is an infinite series which can be written as

$$\Delta y = \$1 \times \frac{1}{1-b}$$

Government Spending and Taxation

(A) An increase in government spending leads to an increase in output. (B) An increase in taxes leads to a decrease in output.

Fiscal Multipliers

Multiplier for government spending

$$\Delta Y = \left(\frac{1}{1-b}\right) \times \Delta G$$

Investment multiplier

$$\Delta Y = \left(\frac{1}{1-b}\right) \times \Delta I$$

Consumption multiplier

$$\Delta Y = \left(\frac{1}{1-b}\right) \times \Delta C$$

Tax multiplier

$$\Delta Y = \left(\frac{-b}{1-b}\times\right) \times \Delta T$$

Government Spending and Taxes

•
$$C_a + b \times (y - T)$$

output = planned expenditures or

$$y = C + I + G,$$

$$\rightarrow y = (C_a + b \times (y - T)) + I + G,$$

$$\rightarrow y - by = (C_a - bT) + I + G,$$

$$y^* = \frac{C_a - bT + I + G,}{1 - b}$$

 Using this formula and the method just outlined, we can find the multiplier for changes in government spending and the multiplier for changes in taxes

Proof

Government spending multiplier:

$$y_0^* = \frac{C_{a} - bT + l + G_0}{1 - b},$$
$$y_1^* = \frac{C_{a} - bT + l + G_1}{1 - b},$$

Then

$$\begin{split} \Delta y &= y_1 - y_0 &= \frac{C_a - bT + I + G_1}{1 - b} - \frac{C_a - bT + I + G_0}{1 - b}, \\ &= \frac{G_1 - G_0}{1 - b}, \\ &\to \Delta y &= \left(\frac{1}{1 - b}\right) \times \Delta G. \end{split}$$

Proof (cont.)

Tax multiplier:

$$y_0^* = \frac{C_a - bT_0 + I + G_1}{1 - b}$$

$$y_1^* = \frac{C_a - bT_1 + I + G_1}{1 - b}$$

Then

$$\begin{split} \Delta y &= y_1 - y_0 &= \frac{C_a - bT_1 + l + G}{1 - b} - \frac{C_a - bT_0 + l + G}{1 - b}, \\ &= \frac{-bT_1 - (-bT_0)}{1 - b}, \\ &= \frac{-b \times (T_1 - T_0)}{1 - b}, \\ &\to \Delta y &= \left(\frac{-b}{1 - b}\right) \times \Delta T. \end{split}$$

Balanced Budget Multiplier

- Increasing T and G by equal amounts will $\uparrow Y$
- G has larger multiplier than taxes T
- Increase of y due to \uparrow G outweighs the decrease of y due to T \uparrow
- Balanced budget multiplier

$$BBM = \frac{1}{1-b} + \frac{-b}{1-b},$$

$$\rightarrow BBM = \frac{1-b}{1-b},$$

$$\rightarrow BBM = 1$$

Growth Rates of U.S. GDP, 1871–2011

Automatic Stabilizers

Understanding Automatic Stabilizers

- Automatic stabilizers are taxes and transfer payments that stabilize GDP without requiring policymakers to take explicit actions
 - When income is high, the government collects more taxes and pays out less transfer payments \rightarrow *C* \downarrow
 - When output is low, the government collects less taxes and pays out more in transfer payments \rightarrow *C* \uparrow
- Automatic stabilizers prevent
 - *C* from falling as much in bad times (reduce multiplier when *y* is low)
 - C from rising as much in good times (reduce multiplier when y is high)
 - Automatic stabilizers reduce the multiplier!

Understanding Automatic Stabilizers

Understanding Automatic Stabilizers

If consumption depends on after-tax income, we have the following consumption function:

$$C = C_a + \overbrace{b \times (1 - \tau)}^{\text{slope}} \times y$$

- Adjusted $MPC = b \times (1-\tau)$
- An increase in tax rates decreases the slope of the C + I + G line
- The tax lowers output and reduces the multiplier
- New Multiplier: $\frac{1}{1-b\times(1-\tau)}$ is smaller than $\frac{1}{1-b}$

Consumers will import more goods as income rises

 $M = m \times y$

- The fraction *m* is known as the marginal propensity to import
- We subtract this fraction from b, the overall marginal propensity to consume, to obtain the MPC for spending on domestic goods, b-m

Equilibrium Output with Government Spending, Taxes, and the Foreign Sector

Output equals planned expenditures

$$y = C + I + G + X - M$$

• Substituting $C = C_a + b(y - T)$ and $M = m \times y$ we get

$$y = (C_a + b(y - T)) + I + G + X - m \times y,$$

$$\to y - by + my = (C_a - bT) + I + G + X,$$

$$\to y^* = \frac{C_a - bT + I + G + X}{1 - b + m},$$

$$\to y^* = \frac{C_a - bT + I + G + X}{1 - (b - m)},$$

U.S. Equilibrium Output in an Open Economy

U.S. Equilibrium Output in an Open Economy

- Output equals planned expenditures: y = C + I + G + X M
- Substituting $C = C_a + b(y T)$ and $M = m \times y$ we get

$$y = C_a + b(y - T) + I + G + X - my$$

so that the new expenditure function is:

$$y = \overbrace{C_a + I + G + X - bT}^{\text{intercept}} + \overbrace{(b - m)}^{\text{slope}} y$$

How Increases in Exports and Imports Affect GDP

Fiscal Multipliers in Open Economy are Smaller

Multiplier for government spending

$$\Delta Y = \left(\frac{1}{1 - (b - m)}\right) \times \Delta G$$

Investment multiplier

$$\Delta Y = \left(\frac{1}{1 - (b - m)}\right) \times \Delta I$$

Consumption multiplier

$$\Delta Y = \left(\frac{1}{1 - (b - m)}\right) \times \Delta C$$

Export multiplier

$$\Delta Y = \left(\frac{1}{1 - (b - m)}\right) \times \Delta X$$

Tax multiplier

$$\Delta Y = \left(\frac{-b}{1 - (b - m)} \times\right) \times \Delta T$$

Locomotive Effect

- From the early 1990s until quite recently, the United States was what economists term the "locomotive" for global growth
- Our demand for foreign products increased. U.S. imports increased along with output during this period
- The increased demand fueled exports in foreign countries and promoted their growth
- Studies have shown that the increase in demand for foreign goods was actually more pronounced for developing countries than for developed countries
- Conclusion: The United States was truly a locomotive, pulling the developing countries along

Income Expenditure Model and AD Curve

The Income-Expenditure Model and the Aggregate Demand Curve

The Income-Expenditure Model and the Aggregate Demand Curve

